No Arabic abstract
The cost of wind energy can be reduced by using SCADA data to detect faults in wind turbine components. Normal behavior models are one of the main fault detection approaches, but there is a lack of consensus in how different input features affect the results. In this work, a new taxonomy based on the causal relations between the input features and the target is presented. Based on this taxonomy, the impact of different input feature configurations on the modelling and fault detection performance is evaluated. To this end, a framework that formulates the detection of faults as a classification problem is also presented.
Super-large-scale particle image velocimetry and flow visualization with natural snowfall is used to collect and analyze multiple datasets in the near wake of a 2.5 MW wind turbine. Each dataset captures the full vertical span of the wake from a different perspective. Together, these datasets compose a three-dimensional picture of the near-wake flow, including the effect of the tower and hub and the variation of instantaneous wake expansion in response to changes in turbine operation. A region of high-speed flow is observed directly behind the hub, and a region of low-speed flow appears behind the tower. Additionally, the hub produces a region of enhanced turbulence in its wake while the tower reduces turbulence near the ground as it breaks up turbulent structures in the boundary layer. Analysis of the instantaneous wake behaviour reveals variations in wake expansion, and even periods of wake contraction, occurring in response to changes in the angle of attack and blade pitch gradient. This behaviour is found to depend on the region of operation of the turbine. These findings can be incorporated into wake models and advanced control algorithms for wind farm optimization and can be used to validate wind turbine wake simulations.
Epilepsy is a neurological disorder classified as the second most serious neurological disease known to humanity, after stroke. Localization of the epileptogenic zone is an important step for epileptic patient treatment, which starts with epileptic spike detection. The common practice for spike detection of brain signals is via visual scanning of the recordings, which is a subjective and a very time-consuming task. Motivated by that, this paper focuses on using machine learning for automatic detection of epileptic spikes in magnetoencephalography (MEG) signals. First, we used the Position Weight Matrix (PWM) method combined with a uniform quantizer to generate useful features. Second, the extracted features are classified using a Support Vector Machine (SVM) for the purpose of epileptic spikes detection. The proposed technique shows great potential in improving the spike detection accuracy and reducing the feature vector size. Specifically, the proposed technique achieved average accuracy up to 98% in using 5-folds cross-validation applied to a balanced dataset of 3104 samples. These samples are extracted from 16 subjects where eight are healthy and eight are epileptic subjects using a sliding frame of size of 100 samples-points with a step-size of 2 sample-points
In this study, the problem of fault zone detection of distance relaying in FACTS-based transmission lines is analyzed. Existence of FACTS devices on the transmission line, when they are included in the fault zone, from the distance relay point of view, causes different problems in determining the exact location of the fault by changing the impedance seen by the relay. The extent of these changes depends on the parameters that have been set in FACTS devices. To solve the problem associated with these compensators, two instruments for separation and analysis of three-line currents, from the relay point of view at fault instance, have been utilized. The wavelet transform was used to separate the high-frequency components of the three-line currents, and the support vector machine (using methods for multi-class usage) was used for classification of fault location into three protection regions of distance relay. Besides, to investigate the effects of TCSC location on fault zone detection of distance relay, two places, one in fifty percent of line length and the other in seventy-five percent of line length, have been considered as two scenarios for confirmation of the proposed method. Simulations indicate that this method is effective in the protection of FACTS-based transmission lines.
Wearable sensor-based human activity recognition (HAR) has been a research focus in the field of ubiquitous and mobile computing for years. In recent years, many deep models have been applied to HAR problems. However, deep learning methods typically require a large amount of data for models to generalize well. Significant variances caused by different participants or diverse sensor devices limit the direct application of a pre-trained model to a subject or device that has not been seen before. To address these problems, we present an invariant feature learning framework (IFLF) that extracts common information shared across subjects and devices. IFLF incorporates two learning paradigms: 1) meta-learning to capture robust features across seen domains and adapt to an unseen one with similarity-based data selection; 2) multi-task learning to deal with data shortage and enhance overall performance via knowledge sharing among different subjects. Experiments demonstrated that IFLF is effective in handling both subject and device diversion across popular open datasets and an in-house dataset. It outperforms a baseline model of up to 40% in test accuracy.
In this paper, a novel sensor fault detection, isolation and identification (FDII) strategy is proposed by using the multiple model (MM) approach. The scheme is based on multiple hybrid Kalman filters (HKF) which represents an integration of a nonlinear mathematical model of the system with a number of piecewise linear (PWL) models. The proposed fault detection and isolation (FDI) scheme is capable of detecting and isolating sensor faults during the entire operational regime of the system by interpolating the PWL models using a Bayesian approach. Moreover, the proposed multiple HKF-based FDI scheme is extended to identify the magnitude of a sensor fault by using a modified generalized likelihood ratio (GLR) method which relies on the healthy operational mode of the system. To illustrate the capabilities of our proposed FDII methodology, extensive simulation studies are conducted for a nonlinear gas turbine engine. Various single and concurrent sensor fault scenarios are considered to demonstrate the effectiveness of our proposed on-line hierarchical multiple HKF-based FDII scheme under different flight modes. Finally, our proposed HKF-based FDI approach is compared with various filtering methods such as the linear, extended, unscented and cubature Kalman filters (LKF, EKF, UKF and CKF, respectively) corresponding to both interacting and non-interacting multiple model (MM) based schemes. Our comparative studies confirm the superiority of our proposed HKF method in terms of promptness of the fault detection, lower false alarm rates, as well as robustness with respect to the engine health parameters degradations.