Do you want to publish a course? Click here

Invariant Feature Learning for Sensor-based Human Activity Recognition

187   0   0.0 ( 0 )
 Added by Yujiao Hao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Wearable sensor-based human activity recognition (HAR) has been a research focus in the field of ubiquitous and mobile computing for years. In recent years, many deep models have been applied to HAR problems. However, deep learning methods typically require a large amount of data for models to generalize well. Significant variances caused by different participants or diverse sensor devices limit the direct application of a pre-trained model to a subject or device that has not been seen before. To address these problems, we present an invariant feature learning framework (IFLF) that extracts common information shared across subjects and devices. IFLF incorporates two learning paradigms: 1) meta-learning to capture robust features across seen domains and adapt to an unseen one with similarity-based data selection; 2) multi-task learning to deal with data shortage and enhance overall performance via knowledge sharing among different subjects. Experiments demonstrated that IFLF is effective in handling both subject and device diversion across popular open datasets and an in-house dataset. It outperforms a baseline model of up to 40% in test accuracy.



rate research

Read More

The vast proliferation of sensor devices and Internet of Things enables the applications of sensor-based activity recognition. However, there exist substantial challenges that could influence the performance of the recognition system in practical scenarios. Recently, as deep learning has demonstrated its effectiveness in many areas, plenty of deep methods have been investigated to address the challenges in activity recognition. In this study, we present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition. We first introduce the multi-modality of the sensory data and provide information for public datasets that can be used for evaluation in different challenge tasks. We then propose a new taxonomy to structure the deep methods by challenges. Challenges and challenge-related deep methods are summarized and analyzed to form an overview of the current research progress. At the end of this work, we discuss the open issues and provide some insights for future directions.
95 - Chenglin Li , Di Niu , Bei Jiang 2021
Human activity recognition (HAR) based on mobile sensors plays an important role in ubiquitous computing. However, the rise of data regulatory constraints precludes collecting private and labeled signal data from personal devices at scale. Federated learning has emerged as a decentralized alternative solution to model training, which iteratively aggregates locally updated models into a shared global model, therefore being able to leverage decentralized, private data without central collection. However, the effectiveness of federated learning for HAR is affected by the fact that each user has different activity types and even a different signal distribution for the same activity type. Furthermore, it is uncertain if a single global model trained can generalize well to individual users or new users with heterogeneous data. In this paper, we propose Meta-HAR, a federated representation learning framework, in which a signal embedding network is meta-learned in a federated manner, while the learned signal representations are further fed into a personalized classification network at each user for activity prediction. In order to boost the representation ability of the embedding network, we treat the HAR problem at each user as a different task and train the shared embedding network through a Model-Agnostic Meta-learning framework, such that the embedding network can generalize to any individual user. Personalization is further achieved on top of the robustly learned representations in an adaptation procedure. We conducted extensive experiments based on two publicly available HAR datasets as well as a newly created HAR dataset. Results verify that Meta-HAR is effective at maintaining high test accuracies for individual users, including new users, and significantly outperforms several baselines, including Federated Averaging, Reptile and even centralized learning in certain cases.
258 - Ling Chen , Yi Zhang , Sirou Zhu 2021
Unsupervised user adaptation aligns the feature distributions of the data from training users and the new user, so a well-trained wearable human activity recognition (WHAR) model can be well adapted to the new user. With the development of wearable sensors, multiple wearable sensors based WHAR is gaining more and more attention. In order to address the challenge that the transferabilities of different sensors are different, we propose SALIENCE (unsupervised user adaptation model for multiple wearable sensors based human activity recognition) model. It aligns the data of each sensor separately to achieve local alignment, while uniformly aligning the data of all sensors to ensure global alignment. In addition, an attention mechanism is proposed to focus the activity classifier of SALIENCE on the sensors with strong feature discrimination and well distribution alignment. Experiments are conducted on two public WHAR datasets, and the experimental results show that our model can yield a competitive performance.
311 - H.D. Nguyen , K.P. Tran , X. Zeng 2019
Recent years have witnessed the rapid development of human activity recognition (HAR) based on wearable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such as Decision Trees, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, and Multilayer Perceptron are successfully used in HAR. Although these methods are fast and easy for implementation, they still have some limitations due to poor performance in a number of situations. In this paper, we propose a novel method based on the ensemble learning to boost the performance of these machine learning methods for HAR.
Human Activity Recognition from body-worn sensor data poses an inherent challenge in capturing spatial and temporal dependencies of time-series signals. In this regard, the existing recurrent or convolutional or their hybrid models for activity recognition struggle to capture spatio-temporal context from the feature space of sensor reading sequence. To address this complex problem, we propose a self-attention based neural network model that foregoes recurrent architectures and utilizes different types of attention mechanisms to generate higher dimensional feature representation used for classification. We performed extensive experiments on four popular publicly available HAR datasets: PAMAP2, Opportunity, Skoda and USC-HAD. Our model achieve significant performance improvement over recent state-of-the-art models in both benchmark test subjects and Leave-one-subject-out evaluation. We also observe that the sensor attention maps produced by our model is able capture the importance of the modality and placement of the sensors in predicting the different activity classes.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا