No Arabic abstract
The magnetic, thermal and transport properties as well as electronic band structure of MnPtSi are reported. MnPtSi is a metal that undergoes a ferromagnetic transition at $T_{mathrm{C}}=340$(1) K and a spin-reorientation transition at $T_{mathrm{N}}=326$(1) K to an antiferromagnetic phase. First-principles electronic structure calculations indicate a not-fully polarized spin state of Mn in a $d^5$ electron configuration with $J=S=3$/2, in agreement with the saturation magnetization of 3~$mu_{mathrm{B}}$ in the ordered state and the observed paramagnetic effective moment. A sizeable anomalous Hall effect in the antiferromagnetic phase alongside the computational study suggests that the antiferromagnetic structure is non-collinear. Based on thermodynamic and resistivity data we construct a magnetic phase diagram. Magnetization curves $M$($H$) at low temperatures reveal a metamagnetic transition of spin-flop type. The spin-flopped phase terminates at a critical point with $T_{mathrm{cr}}approx 300$ K and $H_{mathrm{cr}}approx 10$ kOe, near which a peak of the magnetocaloric entropy change is observed. Using Arrott plot analysis and magnetoresistivity data we argue that the metamagnetic transition is of a first-order type, whereas the strong field dependence of $T_{mathrm{N}}$ and the linear relationship of the $T_{mathrm{N}}$ with $M^2$ hint at its magnetoelastic nature.
Magnetism in SmPd2Al3 was investigated on a single crystal by magnetometry and neutron diffraction. SmPd2Al3 represents a distinctive example of the Sm magnetism exhibiting complex magnetic behavior at low temperatures with four consecutive magnetic phase transitions at 3.4, 3.9, 4.3 and 12.5 K. The rich magnetic phase diagram of this compound reflects the specific features of the Sm3+ ion, namely the energy nearness of the ground-state multiplet J = 5/2 and the first excited multiplet J = 7/2 in conjunction with strong crystal field influence. Consequently, a significantly reduced Sm magnetic moment in comparison with the theoretical Sm3+ free-ion value is observed. Despite the strong neutron absorption by natural samarium and the small Sm magnetic moment (~ 0.2 {mu}B) we have successfully determined the magnetic k-vector (1/3, 1/3, 0) of the phase existing in the temperature interval 12.5 - 4.3 K. This observation classifies the SmPd2Al3 compound as a magnetically frustrated system. The complex magnetic behavior of this material is further illustrated by kinetic effects of the magnetization inducing rather complicated magnetic structure with various metastable states.
Low-temperature, high-field (H[-110] <= 7.5 T), neutron diffraction experiments on single-crystal Ce0.70Pr0.30B6 are reported. Two successive incommensurate phases are found to exist in zero field. The appearance, for H >= 4.6 T at T = 2 K, of an antiferromagnetic structure, k{AF} = (1/2, 1/2, 1/2), most likely due to an underlying antiferroquadrupolar order, is discussed in connection with recent x-ray diffraction experiments.
Magnetic structure of single crystalline TmB4 has been studied by magnetization, magnetoresistivity and specific heat measurements. A complex phase diagram with different antiferromagnetic (AF) phases was observed below TN1 = 11.7 K. Besides the plateau at half-saturated magnetization (1/2 MS), also plateaus at 1/9, 1/8 and 1/7 of MS were observed as function of applied magnetic field B//c. From additional neutron scattering experiments on TmB4, we suppose that those plateaus arise from a stripe structure which appears to be coherent domain boundaries between AF ordered blocks of 7 or 9 lattice constants. The received results suggest that the frustration among the Tm3+ magnetic ions, which maps to a geometrically frustrated Shastry-Sutherland lattice lead to strong competition between AF and ferromagnetic (FM) order. Thus, stripe structures in intermediate field appear to be the best way to minimize the magnetostatic energy against other magnetic interactions between the Tm ions combined with very strong Ising anisotropy.
A new U-based compound of the U2Rh2Pb, a new compound of the U2T2X series was prepared in a single-crystal form. Its structure was determined as belonging to the tetragonal Mo2FeB2 structure type with the shortest U-U spacing along the c. U2Rh2Pb undergoes an antiferromagnetic transition at TN of 20 K and exhibits an enhanced Sommerfeld coefficient 150 mJ/molK2. In contrast to the two rhodium analogues U2Rh2In and U2Rh2Sn, the easy-magnetization direction is the c with rather low value of the critical field 4.3 T of the metamagnetic transition of a spin-flip type. The observed dependences of TN and Hc on temperature and magnetic field have been used for constructing a magnetic phase diagram. The experimental observations are mostly supported by first-principles calculations.
CeAu2Ge2 single crystals (tetragonal ThCr2Si2 structure) have been grown in Au-Ge flux (AGF) as well as in Sn flux (SF). X-ray powder-diffraction and EDX measurements indicate that in the latter case Sn atoms from the flux are incorporated in the samples, leading to a decrease of the lattice constants by ~ 0.3% compared to AGF samples. For both types of samples, a strong anisotropy of the magnetization M for the magnetic field B parallel and perpendicular to the c direction is observed with M||/M^{bot} ~ 6 - 7 in low fields just above 10 K. This anisotropy is preserved to high fields and temperatures and can be quantitatively explained by crystal electric field effects. Antiferromagnetic ordering sets in around 10 K as previously found for polycrystalline samples. From the magnetization data of our single crystals we obtain the phase diagrams for the AGF and SF samples. The magnetic properties depend strongly on the flux employed. While the AGF samples exhibit a complex behavior indicative of several magnetic transitions, the SF samples adopt a simpler antiferromagnetic structure with a single spin-flop transition. This effect of a more ordered state induced by disorder in form of Sn impurities is qualitatively explained within the ANNNI model, which assumes ferromagnetic and antiferromagnetic interactions in agreement with the magnetic structure previously inferred from neutron-scattering experiments on polycrystalline CeAu2Ge2 by Loidl et al. [Phys. Rev. B 46, 9341, (1992)].