No Arabic abstract
The basic ingredient of CCFT holography is to regard four-dimensional amplitudes describing conformal wave packets as two-dimensional conformal correlation functions of the operators associated to external particles. By construction, these operators transform as quasi-primary fields under SL(2,C) conformal symmetry group of the celestial sphere. We derive the OPE of the CCFT energy-momentum tensor with the operators representing gauge bosons and show that they transform as Virasoro primaries under diffeomorphisms of the celestial sphere.
The 4D 4-point scattering amplitude of massless scalars via a massive exchange is expressed in a basis of conformal primary particle wavefunctions. This celestial amplitude is expanded in a basis of 2D conformal partial waves on the unitary principal series, and then rewritten as a sum over 2D conformal blocks via contour deformation. The conformal blocks include intermediate exchanges of spinning light-ray states, as well as scalar states with positive integer conformal weights. The conformal block prefactors are found as expected to be quadratic in the celestial OPE coefficients.
We study exponentiated soft exchange in $d+2$ dimensional gauge and gravitational theories using the celestial CFT formalism. These models exhibit spontaneously broken asymptotic symmetries generated by gauge transformations with non-compact support, and the effective dynamics of the associated Goldstone edge mode is expected to be $d$-dimensional. The introduction of an infrared regulator also explicitly breaks these symmetries so the edge mode in the regulated theory is really a $d$-dimensional pseudo-Goldstone boson. Symmetry considerations determine the leading terms in the effective action, whose coefficients are controlled by the infrared cutoff. Computations in this model reproduce the abelian infrared divergences in $d=2$, and capture the re-summed (infrared finite) soft exchange in higher dimensions. The model also reproduces the leading soft theorems in gauge and gravitational theories in all dimensions. Interestingly, we find that it is the shadow transform of the Goldstone mode that has local $d$-dimensional dynamics: the effective action expressed in terms of the Goldstone mode is non-local for $d>2$. We also introduce and discuss new magnetic soft theorems. Our analysis demonstrates that symmetry principles suffice to calculate soft exchange in gauge theory and gravity.
We study the operator product expansion (OPE) of two identical scalar primary operators in the lightcone limit in a conformal field theory where a scalar is the operator with lowest twist. We see that in CFTs where both the stress tensor and a scalar are the lowest twist operators, the stress tensor contributes at the leading order in the lightcone OPE and the scalar contributes at the subleading order. We also see that there does not exist a scalar analogue of the average null energy condition (ANEC) for a CFT where a scalar is the lowest twist operator.
We develop the representation of free spinor fields in the bulk of Lorentzian anti-de Sitter space in terms of smeared operators in the dual conformal field theory. To do this we expand the bulk field in a complete set of normalizable modes, work out the extrapolate dictionary for spinor fields, and show that the bulk field can be reconstructed from its near-boundary behavior. In some cases chirality and reality conditions can be imposed in the bulk. We study the action of the CFT modular Hamiltonian on bulk fermions to show that they transform with the expected spinor Lie derivative, and we calculate bulk--boundary two-point functions starting from CFT correlators.
We investigate gauge/gravity duals with flavour for which pure-gauge Kalb-Ramond B fields are turned on in the background, into which a D7 brane probe is embedded. First we consider the case of a magnetic field in two of the spatial boundary directions. We show that at finite temperature, i.e. in the AdS-Schwarzschild background, the B field has a stabilizing effect on the mesons and chiral symmetry breaking occurs for a sufficiently large value of the B field. Then we turn to the electric case of a B field in the temporal direction and one spatial boundary direction. In this case, there is a singular region in which it is necessary to turn on a gauge field on the brane in order to ensure reality of the brane action. We find that the brane embeddings are attracted towards this region. Far away from this region, in the weak field case at zero temperature, we investigate the meson spectrum and find a mass shift similar to the Stark effect.