Do you want to publish a course? Click here

Light cone OPE in a CFT with lowest twist scalar primary

112   0   0.0 ( 0 )
 Added by Atanu Bhatta
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the operator product expansion (OPE) of two identical scalar primary operators in the lightcone limit in a conformal field theory where a scalar is the operator with lowest twist. We see that in CFTs where both the stress tensor and a scalar are the lowest twist operators, the stress tensor contributes at the leading order in the lightcone OPE and the scalar contributes at the subleading order. We also see that there does not exist a scalar analogue of the average null energy condition (ANEC) for a CFT where a scalar is the lowest twist operator.



rate research

Read More

In this paper we consider light-cone fluctuations arising as a consequence of the nontrivial topology of the locally flat cosmic string spacetime. By setting the light-cone along the z-direction we are able to develop a full analysis to calculate the renormalized graviton two-point function, as well as the mean square fluctuation in the geodesic interval function and the time delay (or advance) in the propagation of a light-pulse. We found that all these expressions depend upon the parameter characterizing the conical topology of the cosmic string spacetime and vanish in the absence of it. We also point out that at large distances from the cosmic string the mean square fluctuation in the geodesic interval function is extremely small while in the opposite limit it logarithmically increases, improving the signal and thus, making possible the detection of such quantity.
We initiate an exploration of the conformal bootstrap for $n>4$ point correlation functions. Here we bootstrap correlation functions of the lightest scalar gauge invariant operators in planar non-abelian conformal gauge theories as their locations approach the cusps of a null polygon. For that we consider consistency of the OPE in the so-called snowflake channel with respect to cyclicity transformations which leave the null configuration invariant. For general non-abelian gauge theories this allows us to strongly constrain the OPE structure constants of up to three large spin $J_j$ operators (and large polarization quantum number $l_{j}$) to all loop orders. In $ mathcal{N}=4$ we fix them completely through the duality to null polygonal Wilson loops and the recent origin limit of the hexagon explored by Basso, Dixon and Papathanasiou.
The basic ingredient of CCFT holography is to regard four-dimensional amplitudes describing conformal wave packets as two-dimensional conformal correlation functions of the operators associated to external particles. By construction, these operators transform as quasi-primary fields under SL(2,C) conformal symmetry group of the celestial sphere. We derive the OPE of the CCFT energy-momentum tensor with the operators representing gauge bosons and show that they transform as Virasoro primaries under diffeomorphisms of the celestial sphere.
We study the effects of light-cone fluctuations on the renormalized zero-point energy associated with a free massless scalar field in the presence of boundaries. In order to simulate light-cone fluctuations we introduce a space-time dependent random coefficient in the Klein-Gordon operator. We assume that the field is defined in a domain with one confined direction. For simplicity, we choose the symmetric case of two parallel plates separated by a distance $a$. The correction to the renormalized vacuum energy density between the plates goes as $1/a^{8}$ instead of the usual $1/a^{4}$ dependence for the free case. In turn we also show that light-cone fluctuations break down the vacuum pressure homogeneity between the plates.
We study a self-interacting scalar field theory coupled to gravity and are interested in spherically symmetric solutions with a regular origin surrounded by a horizon. For a scalar potential containing a barrier, and using the most general spherically symmetric ansatz, we show that in addition to the known static, oscillating solutions discussed earlier in the literature there exist new classes of solutions which appear in the strong field case. For these solutions the spatial sphere shrinks either beyond the horizon, implying a collapsing universe outside of the cosmological horizon, or it shrinks already inside of the horizon, implying the existence of a black hole surrounding the scalar lump in all directions. Crucial for the existence of all such solutions is the presence of a scalar field potential with a barrier that satisfies the swampland conjectures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا