Do you want to publish a course? Click here

Implicitly Learning to Reason in First-Order Logic

158   0   0.0 ( 0 )
 Added by Brendan Juba
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We consider the problem of answering queries about formulas of first-order logic based on background knowledge partially represented explicitly as other formulas, and partially represented as examples independently drawn from a fixed probability distribution. PAC semantics, introduced by Valiant, is one rigorous, general proposal for learning to reason in formal languages: although weaker than classical entailment, it allows for a powerful model theoretic framework for answering queries while requiring minimal assumptions about the form of the distribution in question. To date, however, the most significant limitation of that approach, and more generally most machine learning approaches with robustness guarantees, is that the logical language is ultimately essentially propositional, with finitely many atoms. Indeed, the theoretical findings on the learning of relational theories in such generality have been resoundingly negative. This is despite the fact that first-order logic is widely argued to be most appropriate for representing human knowledge. In this work, we present a new theoretical approach to robustly learning to reason in first-order logic, and consider universally quantified clauses over a countably infinite domain. Our results exploit symmetries exhibited by constants in the language, and generalize the notion of implicit learnability to show how queries can be computed against (implicitly) learned first-order background knowledge.



rate research

Read More

Automated theorem provers have traditionally relied on manually tuned heuristics to guide how they perform proof search. Deep reinforcement learning has been proposed as a way to obviate the need for such heuristics, however, its deployment in automated theorem proving remains a challenge. In this paper we introduce TRAIL, a system that applies deep reinforcement learning to saturation-based theorem proving. TRAIL leverages (a) a novel neural representation of the state of a theorem prover and (b) a novel characterization of the inference selection process in terms of an attention-based action policy. We show through systematic analysis that these mechanisms allow TRAIL to significantly outperform previous reinforcement-learning-based theorem provers on two benchmark datasets for first-order logic automated theorem proving (proving around 15% more theorems).
In situations where explicit communication is limited, human collaborators act by learning to: (i) infer meaning behind their partners actions, and (ii) convey private information about the state to their partner implicitly through actions. The first component of this learning process has been well-studied in multi-agent systems, whereas the second --- which is equally crucial for successful collaboration --- has not. To mimic both components mentioned above, thereby completing the learning process, we introduce a novel algorithm: Policy Belief Learning (PBL). PBL uses a belief module to model the other agents private information and a policy module to form a distribution over actions informed by the belief module. Furthermore, to encourage communication by actions, we propose a novel auxiliary reward which incentivizes one agent to help its partner to make correct inferences about its private information. The auxiliary reward for communication is integrated into the learning of the policy module. We evaluate our approach on a set of environments including a matrix game, particle environment and the non-competitive bidding problem from contract bridge. We show empirically that this auxiliary reward is effective and easy to generalize. These results demonstrate that our PBL algorithm can produce strong pairs of agents in collaborative games where explicit communication is disabled.
Robust learning in expressive languages with real-world data continues to be a challenging task. Numerous conventional methods appeal to heuristics without any assurances of robustness. While probably approximately correct (PAC) Semantics offers strong guarantees, learning explicit representations is not tractable, even in propositional logic. However, recent work on so-called implicit learning has shown tremendous promise in terms of obtaining polynomial-time results for fragments of first-order logic. In this work, we extend implicit learning in PAC-Semantics to handle noisy data in the form of intervals and threshold uncertainty in the language of linear arithmetic. We prove that our extended framework keeps the existing polynomial-time complexity guarantees. Furthermore, we provide the first empirical investigation of this hitherto purely theoretical framework. Using benchmark problems, we show that our implicit approach to learning optimal linear programming objective constraints significantly outperforms an explicit approach in practice.
We combine Recurrent Neural Networks with Tensor Product Representations to learn combinatorial representations of sequential data. This improves symbolic interpretation and systematic generalisation. Our architecture is trained end-to-end through gradient descent on a variety of simple natural language reasoning tasks, significantly outperforming the latest state-of-the-art models in single-task and all-tasks settings. We also augment a subset of the data such that training and test data exhibit large systematic differences and show that our approach generalises better than the previous state-of-the-art.
Automated theorem proving in first-order logic is an active research area which is successfully supported by machine learning. While there have been various proposals for encoding logical formulas into numerical vectors -- from simple strings to more involved graph-based embeddings -- little is known about how these different encodings compare. In this paper, we study and experimentally compare pattern-based embeddings that are applied in current systems with popular graph-based encodings, most of which have not been considered in the theorem proving context before. Our experiments show that the advantages of simpler encoding schemes in terms of runtime are outdone by more complex graph-based embeddings, which yield more efficient search strategies and simpler proofs. To support this, we present a detailed analysis across several dimensions of theorem prover performance beyond just proof completion rate, thus providing empirical evidence to help guide future research on neural-guided theorem proving towards the most promising directions.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا