Do you want to publish a course? Click here

Learning to Communicate Implicitly By Actions

143   0   0.0 ( 0 )
 Added by Zheng Tian Mr
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In situations where explicit communication is limited, human collaborators act by learning to: (i) infer meaning behind their partners actions, and (ii) convey private information about the state to their partner implicitly through actions. The first component of this learning process has been well-studied in multi-agent systems, whereas the second --- which is equally crucial for successful collaboration --- has not. To mimic both components mentioned above, thereby completing the learning process, we introduce a novel algorithm: Policy Belief Learning (PBL). PBL uses a belief module to model the other agents private information and a policy module to form a distribution over actions informed by the belief module. Furthermore, to encourage communication by actions, we propose a novel auxiliary reward which incentivizes one agent to help its partner to make correct inferences about its private information. The auxiliary reward for communication is integrated into the learning of the policy module. We evaluate our approach on a set of environments including a matrix game, particle environment and the non-competitive bidding problem from contract bridge. We show empirically that this auxiliary reward is effective and easy to generalize. These results demonstrate that our PBL algorithm can produce strong pairs of agents in collaborative games where explicit communication is disabled.



rate research

Read More

We consider the problem of answering queries about formulas of first-order logic based on background knowledge partially represented explicitly as other formulas, and partially represented as examples independently drawn from a fixed probability distribution. PAC semantics, introduced by Valiant, is one rigorous, general proposal for learning to reason in formal languages: although weaker than classical entailment, it allows for a powerful model theoretic framework for answering queries while requiring minimal assumptions about the form of the distribution in question. To date, however, the most significant limitation of that approach, and more generally most machine learning approaches with robustness guarantees, is that the logical language is ultimately essentially propositional, with finitely many atoms. Indeed, the theoretical findings on the learning of relational theories in such generality have been resoundingly negative. This is despite the fact that first-order logic is widely argued to be most appropriate for representing human knowledge. In this work, we present a new theoretical approach to robustly learning to reason in first-order logic, and consider universally quantified clauses over a countably infinite domain. Our results exploit symmetries exhibited by constants in the language, and generalize the notion of implicit learnability to show how queries can be computed against (implicitly) learned first-order background knowledge.
Robust learning in expressive languages with real-world data continues to be a challenging task. Numerous conventional methods appeal to heuristics without any assurances of robustness. While probably approximately correct (PAC) Semantics offers strong guarantees, learning explicit representations is not tractable, even in propositional logic. However, recent work on so-called implicit learning has shown tremendous promise in terms of obtaining polynomial-time results for fragments of first-order logic. In this work, we extend implicit learning in PAC-Semantics to handle noisy data in the form of intervals and threshold uncertainty in the language of linear arithmetic. We prove that our extended framework keeps the existing polynomial-time complexity guarantees. Furthermore, we provide the first empirical investigation of this hitherto purely theoretical framework. Using benchmark problems, we show that our implicit approach to learning optimal linear programming objective constraints significantly outperforms an explicit approach in practice.
We present a novel deep recurrent neural network architecture that learns to build implicit plans in an end-to-end manner by purely interacting with an environment in reinforcement learning setting. The network builds an internal plan, which is continuously updated upon observation of the next input from the environment. It can also partition this internal representation into contiguous sub- sequences by learning for how long the plan can be committed to - i.e. followed without re-planing. Combining these properties, the proposed model, dubbed STRategic Attentive Writer (STRAW) can learn high-level, temporally abstracted macro- actions of varying lengths that are solely learnt from data without any prior information. These macro-actions enable both structured exploration and economic computation. We experimentally demonstrate that STRAW delivers strong improvements on several ATARI games by employing temporally extended planning strategies (e.g. Ms. Pacman and Frostbite). It is at the same time a general algorithm that can be applied on any sequence data. To that end, we also show that when trained on text prediction task, STRAW naturally predicts frequent n-grams (instead of macro-actions), demonstrating the generality of the approach.
We consider stochastic convex optimization problems, where several machines act asynchronously in parallel while sharing a common memory. We propose a robust training method for the constrained setting and derive non asymptotic convergence guarantees that do not depend on prior knowledge of update delays, objective smoothness, and gradient variance. Conversely, existing methods for this setting crucially rely on this prior knowledge, which render them unsuitable for essentially all shared-resources computational environments, such as clouds and data centers. Concretely, existing approaches are unable to accommodate changes in the delays which result from dynamic allocation of the machines, while our method implicitly adapts to such changes.
The ability of modeling the other agents, such as understanding their intentions and skills, is essential to an agents interactions with other agents. Conventional agent modeling relies on passive observation from demonstrations. In this work, we propose an interactive agent modeling scheme enabled by encouraging an agent to learn to probe. In particular, the probing agent (i.e. a learner) learns to interact with the environment and with a target agent (i.e., a demonstrator) to maximize the change in the observed behaviors of that agent. Through probing, rich behaviors can be observed and are used for enhancing the agent modeling to learn a more accurate mind model of the target agent. Our framework consists of two learning processes: i) imitation learning for an approximated agent model and ii) pure curiosity-driven reinforcement learning for an efficient probing policy to discover new behaviors that otherwise can not be observed. We have validated our approach in four different tasks. The experimental results suggest that the agent model learned by our approach i) generalizes better in novel scenarios than the ones learned by passive observation, random probing, and other curiosity-driven approaches do, and ii) can be used for enhancing performance in multiple applications including distilling optimal planning to a policy net, collaboration, and competition. A video demo is available at https://www.dropbox.com/s/8mz6rd3349tso67/Probing_Demo.mov?dl=0

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا