No Arabic abstract
Automated theorem proving in first-order logic is an active research area which is successfully supported by machine learning. While there have been various proposals for encoding logical formulas into numerical vectors -- from simple strings to more involved graph-based embeddings -- little is known about how these different encodings compare. In this paper, we study and experimentally compare pattern-based embeddings that are applied in current systems with popular graph-based encodings, most of which have not been considered in the theorem proving context before. Our experiments show that the advantages of simpler encoding schemes in terms of runtime are outdone by more complex graph-based embeddings, which yield more efficient search strategies and simpler proofs. To support this, we present a detailed analysis across several dimensions of theorem prover performance beyond just proof completion rate, thus providing empirical evidence to help guide future research on neural-guided theorem proving towards the most promising directions.
Automated theorem provers have traditionally relied on manually tuned heuristics to guide how they perform proof search. Deep reinforcement learning has been proposed as a way to obviate the need for such heuristics, however, its deployment in automated theorem proving remains a challenge. In this paper we introduce TRAIL, a system that applies deep reinforcement learning to saturation-based theorem proving. TRAIL leverages (a) a novel neural representation of the state of a theorem prover and (b) a novel characterization of the inference selection process in terms of an attention-based action policy. We show through systematic analysis that these mechanisms allow TRAIL to significantly outperform previous reinforcement-learning-based theorem provers on two benchmark datasets for first-order logic automated theorem proving (proving around 15% more theorems).
I propose a system for Automated Theorem Proving in higher order logic using deep learning and eschewing hand-constructed features. Holophrasm exploits the formalism of the Metamath language and explores partial proof trees using a neural-network-augmented bandit algorithm and a sequence-to-sequence model for action enumeration. The system proves 14% of its test theorems from Metamaths set.mm module.
Motivated by applications of first-order theorem proving to software analysis, we introduce a new inference rule, called subsumption demodulation, to improve support for reasoning with conditional equalities in superposition-based theorem proving. We show that subsumption demodulation is a simplification rule that does not require radical changes to the underlying superposition calculus. We implemented subsumption demodulation in the theorem prover Vampire, by extending Vampire with a new clause index and adapting its multi-literal matching component. Our experiments, using the TPTP and SMT-LIB repositories, show that subsumption demodulation in Vampire can solve many new problems that could so far not be solved by state-of-the-art reasoners.
In this paper, we introduce a system called GamePad that can be used to explore the application of machine learning methods to theorem proving in the Coq proof assistant. Interactive theorem provers such as Coq enable users to construct machine-checkable proofs in a step-by-step manner. Hence, they provide an opportunity to explore theorem proving with human supervision. We use GamePad to synthesize proofs for a simple algebraic rewrite problem and train baseline models for a formalization of the Feit-Thompson theorem. We address position evaluation (i.e., predict the number of proof steps left) and tactic prediction (i.e., predict the next proof step) tasks, which arise naturally in tactic-based theorem proving.
To support reasoning about properties of programs operating with boolean values one needs theorem provers to be able to natively deal with the boolean sort. This way, program properties can be translated to first-order logic and theorem provers can be used to prove program properties efficiently. However, in the TPTP language, the input language of automated first-order theorem provers, the use of the boolean sort is limited compared to other sorts, thus hindering the use of first-order theorem provers in program analysis and verification. In this paper, we present an extension FOOL of many-sorted first-order logic, in which the boolean sort is treated as a first-class sort. Boolean terms are indistinguishable from formulas and can appear as arguments to functions. In addition, FOOL contains if-then-else and let-in constructs. We define the syntax and semantics of FOOL and its model-preserving translation to first-order logic. We also introduce a new technique of dealing with boolean sorts in superposition-based theorem provers. Finally, we discuss how the TPTP language can be changed to support FOOL.