Do you want to publish a course? Click here

Learning from Perturbations: Diverse and Informative Dialogue Generation with Inverse Adversarial Training

94   0   0.0 ( 0 )
 Added by Wangchunshu Zhou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose Inverse Adversarial Training (IAT) algorithm for training neural dialogue systems to avoid generic responses and model dialogue history better. In contrast to standard adversarial training algorithms, IAT encourages the model to be sensitive to the perturbation in the dialogue history and therefore learning from perturbations. By giving higher rewards for responses whose output probability reduces more significantly when dialogue history is perturbed, the model is encouraged to generate more diverse and consistent responses. By penalizing the model when generating the same response given perturbed dialogue history, the model is forced to better capture dialogue history and generate more informative responses. Experimental results on two benchmark datasets show that our approach can better model dialogue history and generate more diverse and consistent responses. In addition, we point out a problem of the widely used maximum mutual information (MMI) based methods for improving the diversity of dialogue response generation models and demonstrate it empirically.



rate research

Read More

Text generation is a crucial task in NLP. Recently, several adversarial generative models have been proposed to improve the exposure bias problem in text generation. Though these models gain great success, they still suffer from the problems of reward sparsity and mode collapse. In order to address these two problems, in this paper, we employ inverse reinforcement learning (IRL) for text generation. Specifically, the IRL framework learns a reward function on training data, and then an optimal policy to maximum the expected total reward. Similar to the adversarial models, the reward and policy function in IRL are optimized alternately. Our method has two advantages: (1) the reward function can produce more dense reward signals. (2) the generation policy, trained by entropy regularized policy gradient, encourages to generate more diversified texts. Experiment results demonstrate that our proposed method can generate higher quality texts than the previous methods.
In open-domain dialogue systems, generative approaches have attracted much attention for response generation. However, existing methods are heavily plagued by generating safe responses and unnatural responses. To alleviate these two problems, we propose a novel framework named Dual Adversarial Learning (DAL) for high-quality response generation. DAL is the first work to innovatively utilizes the duality between query generation and response generation to avoid safe responses and increase the diversity of the generated responses. Additionally, DAL uses adversarial learning to mimic human judges and guides the system to generate natural responses. Experimental results demonstrate that DAL effectively improves both diversity and overall quality of the generated responses. DAL outperforms the state-of-the-art methods regarding automatic metrics and human evaluations.
Dialogue systems play an increasingly important role in various aspects of our daily life. It is evident from recent research that dialogue systems trained on human conversation data are biased. In particular, they can produce responses that reflect peoples gender prejudice. Many debiasing methods have been developed for various NLP tasks, such as word embedding. However, they are not directly applicable to dialogue systems because they are likely to force dialogue models to generate similar responses for different genders. This greatly degrades the diversity of the generated responses and immensely hurts the performance of the dialogue models. In this paper, we propose a novel adversarial learning framework Debiased-Chat to train dialogue models free from gender bias while keeping their performance. Extensive experiments on two real-world conversation datasets show that our framework significantly reduces gender bias in dialogue models while maintaining the response quality. The implementation of the proposed framework is released.
Neural conversational models learn to generate responses by taking into account the dialog history. These models are typically optimized over the query-response pairs with a maximum likelihood estimation objective. However, the query-response tuples are naturally loosely coupled, and there exist multiple responses that can respond to a given query, which leads the conversational model learning burdensome. Besides, the general dull response problem is even worsened when the model is confronted with meaningless response training instances. Intuitively, a high-quality response not only responds to the given query but also links up to the future conversations, in this paper, we leverage the query-response-future turn triples to induce the generated responses that consider both the given context and the future conversations. To facilitate the modeling of these triples, we further propose a novel encoder-decoder based generative adversarial learning framework, Posterior Generative Adversarial Network (Posterior-GAN), which consists of a forward and a backward generative discriminator to cooperatively encourage the generated response to be informative and coherent by two complementary assessment perspectives. Experimental results demonstrate that our method effectively boosts the informativeness and coherence of the generated response on both automatic and human evaluation, which verifies the advantages of considering two assessment perspectives.
325 - Tianxing He , James Glass 2019
Although deep learning models have brought tremendous advancements to the field of open-domain dialogue response generation, recent research results have revealed that the trained models have undesirable generation behaviors, such as malicious responses and generic (boring) responses. In this work, we propose a framework named Negative Training to minimize such behaviors. Given a trained model, the framework will first find generated samples that exhibit the undesirable behavior, and then use them to feed negative training signals for fine-tuning the model. Our experiments show that negative training can significantly reduce the hit rate of malicious responses, or discourage frequent responses and improve response diversity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا