Do you want to publish a course? Click here

Long time asymptotics for homoenergetic solutions of the Boltzmann equation. Hyperbolic-dominated case

105   0   0.0 ( 0 )
 Added by Alessia Nota
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we continue the formal analysis of the long-time asymptotics of the homoenergetic solutions for the Boltzmann equation that we began in [18]. They have the form $fleft( x,v,tright) =gleft(v-Lleft( tright) x,tright) $ where $Lleft( tright) =Aleft(I+tAright) ^{-1}$ where $A$ is a constant matrix. Homoenergetic solutions satisfy an integro-differential equation which contains, in addition to the classical Boltzmann collision operator, a linear hyperbolic term. Depending on the properties of the collision kernel the collision and the hyperbolic terms might be of the same order of magnitude as $ttoinfty$, or the collision term could be the dominant one for large times, or the hyperbolic term could be the largest. The first case has been rigorously studied in [17]. Formal asymptotic expansions in the second case have been obtained in [18]. All the solutions obtained in this case can be approximated by Maxwellian distributions with changing temperature. In this paper we focus in the case where the hyperbolic terms are much larger than the collision term for large times (hyperbolic-dominated behavior). In the hyperbolic-dominated case it does not seem to be possible to describe in a simple way all the long time asymptotics of the solutions, but we discuss several physical situations and formulate precise conjectures. We give explicit formulas for the relationship between density, temperature and entropy for these solutions. These formulas differ greatly from the ones at equilibrium.



rate research

Read More

185 - Roland Donninger 2014
We consider the radial wave equation in similarity coordinates within the semigroup formalism. It is known that the generator of the semigroup exhibits a continuum of eigenvalues and embedded in this continuum there exists a discrete set of eigenvalues with analytic eigenfunctions. Our results show that, for sufficiently regular data, the long time behaviour of the solution is governed by the analytic eigenfunctions. The same techniques are applied to the linear stability problem for the fundamental self--similar solution $chi_T$ of the wave equation with a focusing power nonlinearity. Analogous to the free wave equation, we show that the long time behaviour (in similarity coordinates) of linear perturbations around $chi_T$ is governed by analytic mode solutions. In particular, this yields a rigorous proof for the linear stability of $chi_T$ with the sharp decay rate for the perturbations.
begin{abstract} We show that if the initial profile $qleft( xright) $ for the Korteweg-de Vries (KdV) equation is essentially semibounded from below and $int^{infty }x^{5/2}leftvert qleft( xright) rightvert dx<infty,$ (no decay at $-infty$ is required) then the KdV has a unique global classical solution given by a determinant formula. This result is best known to date. end{abstract}
381 - L. K. Arruda , J. Lenells 2017
We derive asymptotic formulas for the solution of the derivative nonlinear Schrodinger equation on the half-line under the assumption that the initial and boundary values lie in the Schwartz class. The formulas clearly show the effect of the boundary on the solution. The approach is based on a nonlinear steepest descent analysis of an associated Riemann-Hilbert problem.
272 - Valeria Banica 2009
We consider the mass-critical focusing nonlinear Schrodinger equation in the presence of an external potential, when the nonlinearity is inhomogeneous. We show that if the inhomogeneous factor in front of the nonlinearity is sufficiently flat at a critical point, then there exists a solution which blows up in finite time with the maximal (unstable) rate at this point. In the case where the critical point is a maximum, this solution has minimal mass among the blow-up solutions. As a corollary, we also obtain unstable blow-up solutions of the mass-critical Schrodinger equation on some surfaces. The proof is based on properties of the linearized operator around the ground state, and on a full use of the invariances of the equation with an homogeneous nonlinearity and no potential, via time-dependent modulations.
We consider semigroups ${alpha_t: ; tgeq 0}$ of normal, unital, completely positive maps $alpha_t$ on a von Neumann algebra ${mathcal M}$. The (predual) semigroup $ u_t (rho):= rho circ alpha_t$ on normal states $rho$ of $mathcal M$ leaves invariant the face ${mathcal F}_p:= {rho : ; rho (p)=1}$ supported by the projection $pin {mathcal M}$, if and only if $alpha_t(p)geq p$ (i.e., $p$ is sub-harmonic). We complete the arguments showing that the sub-harmonic projections form a complete lattice. We then consider $r_o$, the smallest projection which is larger than each support of a minimal invariant face; then $r_o$ is subharmonic. In finite dimensional cases $sup alpha_t(r_o)={bf 1}$ and $r_o$ is also the smallest projection $p$ for which $alpha_t(p)to {bf 1}$. If ${ u_t: ; tgeq 0}$ admits a faithful family of normal stationary states then $r_o={bf 1}$ is useless; if not, it helps to reduce the problem of the asymptotic behaviour of the semigroup for large times.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا