No Arabic abstract
We consider semigroups ${alpha_t: ; tgeq 0}$ of normal, unital, completely positive maps $alpha_t$ on a von Neumann algebra ${mathcal M}$. The (predual) semigroup $ u_t (rho):= rho circ alpha_t$ on normal states $rho$ of $mathcal M$ leaves invariant the face ${mathcal F}_p:= {rho : ; rho (p)=1}$ supported by the projection $pin {mathcal M}$, if and only if $alpha_t(p)geq p$ (i.e., $p$ is sub-harmonic). We complete the arguments showing that the sub-harmonic projections form a complete lattice. We then consider $r_o$, the smallest projection which is larger than each support of a minimal invariant face; then $r_o$ is subharmonic. In finite dimensional cases $sup alpha_t(r_o)={bf 1}$ and $r_o$ is also the smallest projection $p$ for which $alpha_t(p)to {bf 1}$. If ${ u_t: ; tgeq 0}$ admits a faithful family of normal stationary states then $r_o={bf 1}$ is useless; if not, it helps to reduce the problem of the asymptotic behaviour of the semigroup for large times.
Quantum mechanics can be formulated in terms of phase-space functions, according to Wigners approach. A generalization of this approach consists in replacing the density operators of the standard formulation with suitable functions, the so-called generalized Wigner functions or (group-covariant) tomograms, obtained by means of group-theoretical methods. A typical problem arising in this context is to express the evolution of a quantum system in terms of tomograms. In the case of a (suitable) open quantum system, the dynamics can be described by means of a quantum dynamical semigroup in disguise, namely, by a semigroup of operators acting on tomograms rather than on density operators. We focus on a special class of quantum dynamical semigroups, the twirling semigroups, that have interesting applications, e.g., in quantum information science. The disguised counterparts of the twirling semigroups, i.e., the corresponding semigroups acting on tomograms, form a class of semigroups of operators that we call tomographic semigroups. We show that the twirling semigroups and the tomographic semigroups can be encompassed in a unique theoretical framework, a class of semigroups of operators including also the probability semigroups of classical probability theory, so achieving a deeper insight into both the mathematical and the physical aspects of the problem.
Dynamical semigroups have become the key structure for describing open system dynamics in all of physics. Bounded generators are known to be of a standard form, due to Gorini, Kossakowski, Sudarshan and Lindblad. This form is often used also in the unbounded case, but rather little is known about the general form of unbounded generators. In this paper we first give a precise description of the standard form in the unbounded case, emphasizing intuition, and collecting and even proving the basic results around it. We also give a cautionary example showing that the standard form must not be read too naively. Further examples are given of semigroups, which appear to be probability preserving to first order, but are not for finite times. Based on these, we construct examples of generators which are not of standard form.
We show that Toda shock waves are asymptotically close to a modulated finite gap solution in the region separating the soliton and the elliptic wave regions. We previously derived formulas for the leading terms of the asymptotic expansion of these shock waves in all principal regions and conjectured that in the modulation region the next term is of order $O(t^{-1})$. In the present paper we prove this fact and investigate how resonances and eigenvalues influence the leading asymptotic behaviour. Our main contribution is the solution of the local parametrix Riemann-Hilbert problems and a rigorous justification of the analysis. In particular, this involves the construction of a proper singular matrix model solution.
The unipolar and bipolar macroscopic quantum models derived recently for instance in the area of charge transport are considered in spatial one-dimensional whole space in the present paper. These models consist of nonlinear fourth-order parabolic equation for unipolar case or coupled nonlinear fourth-order parabolic system for bipolar case. We show for the first time the self-similarity property of the macroscopic quantum models in large time. Namely, we show that there exists a unique global strong solution with strictly positive density to the initial value problem of the macroscopic quantum models which tends to a self-similar wave (which is not the exact solution of the models) in large time at an algebraic time-decay rate.
Linearity of a dynamical entropy means that the dynamical entropy of the n-fold composition of a dynamical map with itself is equal to n times the dynamical entropy of the map for every positive integer n. We show that the quantum dynamical entropy introduced by Slomczynski and Zyczkowski is nonlinear in the time interval between successive measurements of a quantum dynamical system. This is in contrast to Kolmogorov-Sinai dynamical entropy for classical dynamical systems, which is linear in time. We also compute the exact values of quantum dynamical entropy for the Hadamard walk with varying Luders-von Neumann instruments and partitions.