No Arabic abstract
In this note, we show a sublinear nonergodic convergence rate for the algorithm developed in [Bai, et al. Generalized symmetric ADMM for separable convex optimization. Comput. Optim. Appl. 70, 129-170 (2018)], as well as its linear convergence under assumptions that the sub-differential of each component objective function is piecewise linear and all the constraint sets are polyhedra. These remaining convergence results are established for the stepsize parameters of dual variables belonging to a special isosceles triangle region, which aims to strengthen our understanding for convergence of the generalized symmetric ADMM.
In this paper, we develop a symmetric accelerated stochastic Alternating Direction Method of Multipliers (SAS-ADMM) for solving separable convex optimization problems with linear constraints. The objective function is the sum of a possibly nonsmooth convex function and an average function of many smooth convex functions. Our proposed algorithm combines both ideas of ADMM and the techniques of accelerated stochastic gradient methods using variance reduction to solve the smooth subproblem. One main feature of SAS-ADMM {is} that its dual variable is symmetrically updated after each update of the separated primal variable, which would allow a more flexible and larger convergence region of the dual variable compared with that of standard deterministic or stochastic ADMM. This new stochastic optimization algorithm is shown to converge in expectation with $C{O}(1/T)$ convergence rate, where $T$ is the number of outer iterations. In addition, 3-block extensions of the algorithm and its variant of an accelerated stochastic augmented Lagrangian method are also discussed. Our preliminary numerical experiments indicate the proposed algorithm is very effective for solving separable optimization problems from big-data applications
We introduce the Subspace Power Method (SPM) for calculating the CP decomposition of low-rank even-order real symmetric tensors. This algorithm applies the tensor power method of Kolda-Mayo to a certain modified tensor, constructed from a matrix flattening of the original tensor, and then uses deflation steps. Numerical simulations indicate SPM is roughly one order of magnitude faster than state-of-the-art algorithms, while performing robustly for low-rank tensors subjected to additive noise. We obtain rigorous guarantees for SPM regarding convergence and global optima, for tensors of rank up to roughly the square root of the number of tensor entries, by drawing on results from classical algebraic geometry and dynamical systems. In a second contribution, we extend SPM to compute De Lathauwers symmetric block term tensor decompositions. As an application of the latter decomposition, we provide a method-of-moments for generalized principal component analysis.
The Alternating Direction Method of Multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a Generalized Symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two group variables so that one group consists of $p$ block variables while the other has $q$ block variables, where $p ge 1$ and $q ge 1$ are two integers. The two grouped variables are updated in a {it Gauss-Seidel} scheme, while the variables within each group are updated in a {it Jacobi} scheme, which would make it very attractive for a big data setting. By adding proper proximal terms to the subproblems, we specify the domain of the stepsizes to guarantee that GS-ADMM is globally convergent with a worst-case $O(1/t)$ ergodic convergence rate. It turns out that our convergence domain of the stepsizes is significantly larger than other convergence domains in the literature. Hence, the GS-ADMM is more flexible and attractive on choosing and using larger stepsizes of the dual variable. Besides, two special cases of GS-ADMM, which allows using zero penalty terms, are also discussed and analyzed. Compared with several state-of-the-art methods, preliminary numerical experiments on solving a sparse matrix minimization problem in the statistical learning show that our proposed method is effective and promising.
This paper discusses the problem of symmetric tensor decomposition on a given variety $X$: decomposing a symmetric tensor into the sum of tensor powers of vectors contained in $X$. In this paper, we first study geometric and algebraic properties of such decomposable tensors, which are crucial to the practical computations of such decompositions. For a given tensor, we also develop a criterion for the existence of a symmetric decomposition on $X$. Secondly and most importantly, we propose a method for computing symmetric tensor decompositions on an arbitrary $X$. As a specific application, Vandermonde decompositions for nonsymmetric tensors can be computed by the proposed algorithm.
The Alternating Direction Method of Multipliers (ADMM) provides a natural way of solving inverse problems with multiple partial differential equations (PDE) forward models and nonsmooth regularization. ADMM allows splitting these large-scale inverse problems into smaller, simpler sub-problems, for which computationally efficient solvers are available. In particular, we apply large-scale second-order optimization methods to solve the fully-decoupled Tikhonov regularized inverse problems stemming from each PDE forward model. We use fast proximal methods to handle the nonsmooth regularization term. In this work, we discuss several adaptations (such as the choice of the consensus norm) needed to maintain consistency with the underlining infinite-dimensional problem. We present two imaging applications inspired by electrical impedance tomography and quantitative photoacoustic tomography to demonstrate the proposed methods effectiveness.