Do you want to publish a course? Click here

Convergence on a symmetric accelerated stochastic ADMM with larger stepsizes

107   0   0.0 ( 0 )
 Added by Jianchao Bai
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we develop a symmetric accelerated stochastic Alternating Direction Method of Multipliers (SAS-ADMM) for solving separable convex optimization problems with linear constraints. The objective function is the sum of a possibly nonsmooth convex function and an average function of many smooth convex functions. Our proposed algorithm combines both ideas of ADMM and the techniques of accelerated stochastic gradient methods using variance reduction to solve the smooth subproblem. One main feature of SAS-ADMM {is} that its dual variable is symmetrically updated after each update of the separated primal variable, which would allow a more flexible and larger convergence region of the dual variable compared with that of standard deterministic or stochastic ADMM. This new stochastic optimization algorithm is shown to converge in expectation with $C{O}(1/T)$ convergence rate, where $T$ is the number of outer iterations. In addition, 3-block extensions of the algorithm and its variant of an accelerated stochastic augmented Lagrangian method are also discussed. Our preliminary numerical experiments indicate the proposed algorithm is very effective for solving separable optimization problems from big-data applications

rate research

Read More

In this note, we show a sublinear nonergodic convergence rate for the algorithm developed in [Bai, et al. Generalized symmetric ADMM for separable convex optimization. Comput. Optim. Appl. 70, 129-170 (2018)], as well as its linear convergence under assumptions that the sub-differential of each component objective function is piecewise linear and all the constraint sets are polyhedra. These remaining convergence results are established for the stepsize parameters of dual variables belonging to a special isosceles triangle region, which aims to strengthen our understanding for convergence of the generalized symmetric ADMM.
An inexact accelerated stochastic Alternating Direction Method of Multipliers (AS-ADMM) scheme is developed for solving structured separable convex optimization problems with linear constraints. The objective function is the sum of a possibly nonsmooth convex function and a smooth function which is an average of many component convex functions. Problems having this structure often arise in machine learning and data mining applications. AS-ADMM combines the ideas of both ADMM and the stochastic gradient methods using variance reduction techniques. One of the ADMM subproblems employs a linearization technique while a similar linearization could be introduced for the other subproblem. For a specified choice of the algorithm parameters, it is shown that the objective error and the constraint violation are $mathcal{O}(1/k)$ relative to the number of outer iterations $k$. Under a strong convexity assumption, the expected iterate error converges to zero linearly. A linearized variant of AS-ADMM and incremental sampling strategies are also discussed. Numerical experiments with both stochastic and deterministic ADMM algorithms show that AS-ADMM can be particularly effective for structured optimization arising in big data applications.
Alternating Direction Method of Multipliers (ADMM) is a popular method in solving Machine Learning problems. Stochastic ADMM was firstly proposed in order to reduce the per iteration computational complexity, which is more suitable for big data problems. Recently, variance reduction techniques have been integrated with stochastic ADMM in order to get a fast convergence rate, such as SAG-ADMM and SVRG-ADMM,but the convergence is still suboptimal w.r.t the smoothness constant. In this paper, we propose a new accelerated stochastic ADMM algorithm with variance reduction, which enjoys a faster convergence than all the other stochastic ADMM algorithms. We theoretically analyze its convergence rate and show its dependence on the smoothness constant is optimal. We also empirically validate its effectiveness and show its priority over other stochastic ADMM algorithms.
We present AUQ-ADMM, an adaptive uncertainty-weighted consensus ADMM method for solving large-scale convex optimization problems in a distributed manner. Our key contribution is a novel adaptive weighting scheme that empirically increases the progress made by consensus ADMM scheme and is attractive when using a large number of subproblems. The weights are related to the uncertainty associated with the solutions of each subproblem, and are efficiently computed using low-rank approximations. We show AUQ-ADMM provably converges and demonstrate its effectiveness on a series of machine learning applications, including elastic net regression, multinomial logistic regression, and support vector machines. We provide an implementation based on the PyTorch package.
We introduce a time-implicit, finite-element based space-time discretization scheme for the backward stochastic heat equation, and for the forward-backward stochastic heat equation from stochastic optimal control, and prove strong rates of convergence. The fully discrete version of the forward-backward stochastic heat equation is then used within a gradient descent algorithm to approximately solve the linear-quadratic control problem for the stochastic heat equation driven by additive noise.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا