No Arabic abstract
Developing intelligent persuasive conversational agents to change peoples opinions and actions for social good is the frontier in advancing the ethical development of automated dialogue systems. To do so, the first step is to understand the intricate organization of strategic disclosures and appeals employed in human persuasion conversations. We designed an online persuasion task where one participant was asked to persuade the other to donate to a specific charity. We collected a large dataset with 1,017 dialogues and annotated emerging persuasion strategies from a subset. Based on the annotation, we built a baseline classifier with context information and sentence-level features to predict the 10 persuasion strategies used in the corpus. Furthermore, to develop an understanding of personalized persuasion processes, we analyzed the relationships between individuals demographic and psychological backgrounds including personality, morality, value systems, and their willingness for donation. Then, we analyzed which types of persuasion strategies led to a greater amount of donation depending on the individuals personal backgrounds. This work lays the ground for developing a personalized persuasive dialogue system.
Recent years have seen many breakthroughs in natural language processing (NLP), transitioning it from a mostly theoretical field to one with many real-world applications. Noting the rising number of applications of other machine learning and AI techniques with pervasive societal impact, we anticipate the rising importance of developing NLP technologies for social good. Inspired by theories in moral philosophy and global priorities research, we aim to promote a guideline for social good in the context of NLP. We lay the foundations via the moral philosophy definition of social good, propose a framework to evaluate the direct and indirect real-world impact of NLP tasks, and adopt the methodology of global priorities research to identify priority causes for NLP research. Finally, we use our theoretical framework to provide some practical guidelines for future NLP research for social good. Our data and code are available at http://github.com/zhijing-jin/nlp4sg_acl2021. In addition, we curate a list of papers and resources on NLP for social good at https://github.com/zhijing-jin/NLP4SocialGood_Papers.
Forecasting plays a critical role in the development of organisational business strategies. Despite a considerable body of research in the area of forecasting, the focus has largely been on the financial and economic outcomes of the forecasting process as opposed to societal benefits. Our motivation in this study is to promote the latter, with a view to using the forecasting process to advance social and environmental objectives such as equality, social justice and sustainability. We refer to such forecasting practices as Forecasting for Social Good (FSG) where the benefits to society and the environment take precedence over economic and financial outcomes. We conceptualise FSG and discuss its scope and boundaries in the context of the Doughnut theory. We present some key attributes that qualify a forecasting process as FSG: it is concerned with a real problem, it is focused on advancing social and environmental goals and prioritises these over conventional measures of economic success, and it has a broad societal impact. We also position FSG in the wider literature on forecasting and social good practices. We propose an FSG maturity framework as the means to engage academics and practitioners with research in this area. Finally, we highlight that FSG: (i) cannot be distilled to a prescriptive set of guidelines, (ii) is scalable, and (iii) has the potential to make significant contributions to advancing social objectives.
In recent years, the metaverse has attracted enormous attention from around the world with the development of related technologies. The expected metaverse should be a realistic society with more direct and physical interactions, while the concepts of race, gender, and even physical disability would be weakened, which would be highly beneficial for society. However, the development of metaverse is still in its infancy, with great potential for improvement. Regarding metaverses huge potential, industry has already come forward with advance preparation, accompanied by feverish investment, but there are few discussions about metaverse in academia to scientifically guide its development. In this paper, we highlight the representative applications for social good. Then we propose a three-layer metaverse architecture from a macro perspective, containing infrastructure, interaction, and ecosystem. Moreover, we journey toward both a historical and novel metaverse with a detailed timeline and table of specific attributes. Lastly, we illustrate our implemented blockchain-driven metaverse prototype of a university campus and discuss the prototype design and insights.
App builders commonly use security challenges, a form of step-up authentication, to add security to their apps. However, the ethical implications of this type of architecture has not been studied previously. In this paper, we present a large-scale measurement study of running an existing anti-fraud security challenge, Boxer, in real apps running on mobile devices. We find that although Boxer does work well overall, it is unable to scan effectively on devices that run its machine learning models at less than one frame per second (FPS), blocking users who use inexpensive devices. With the insights from our study, we design Daredevil, anew anti-fraud system for scanning payment cards that work swell across the broad range of performance characteristics and hardware configurations found on modern mobile devices. Daredevil reduces the number of devices that run at less than one FPS by an order of magnitude compared to Boxer, providing a more equitable system for fighting fraud. In total, we collect data from 5,085,444 real devices spread across 496 real apps running production software and interacting with real users.
AI for good (AI4G) projects involve developing and applying artificial intelligence (AI) based solutions to further goals in areas such as sustainability, health, humanitarian aid, and social justice. Developing and deploying such solutions must be done in collaboration with partners who are experts in the domain in question and who already have experience in making progress towards such goals. Based on our experiences, we detail the different aspects of this type of collaboration broken down into four high-level categories: communication, data, modeling, and impact, and distill eleven takeaways to guide such projects in the future. We briefly describe two case studies to illustrate how some of these takeaways were applied in practice during our past collaborations.