Do you want to publish a course? Click here

Coupled Variational Recurrent Collaborative Filtering

225   0   0.0 ( 0 )
 Added by Qingquan Song
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We focus on the problem of streaming recommender system and explore novel collaborative filtering algorithms to handle the data dynamicity and complexity in a streaming manner. Although deep neural networks have demonstrated the effectiveness of recommendation tasks, it is lack of explorations on integrating probabilistic models and deep architectures under streaming recommendation settings. Conjoining the complementary advantages of probabilistic models and deep neural networks could enhance both model effectiveness and the understanding of inference uncertainties. To bridge the gap, in this paper, we propose a Coupled Variational Recurrent Collaborative Filtering (CVRCF) framework based on the idea of Deep Bayesian Learning to handle the streaming recommendation problem. The framework jointly combines stochastic processes and deep factorization models under a Bayesian paradigm to model the generation and evolution of users preferences and items popularities. To ensure efficient optimization and streaming update, we further propose a sequential variational inference algorithm based on a cross variational recurrent neural network structure. Experimental results on three benchmark datasets demonstrate that the proposed framework performs favorably against the state-of-the-art methods in terms of both temporal dependency modeling and predictive accuracy. The learned latent variables also provide visualized interpretations for the evolution of temporal dynamics.



rate research

Read More

We extend variational autoencoders (VAEs) to collaborative filtering for implicit feedback. This non-linear probabilistic model enables us to go beyond the limited modeling capacity of linear factor models which still largely dominate collaborative filtering research.We introduce a generative model with multinomial likelihood and use Bayesian inference for parameter estimation. Despite widespread use in language modeling and economics, the multinomial likelihood receives less attention in the recommender systems literature. We introduce a different regularization parameter for the learning objective, which proves to be crucial for achieving competitive performance. Remarkably, there is an efficient way to tune the parameter using annealing. The resulting model and learning algorithm has information-theoretic connections to maximum entropy discrimination and the information bottleneck principle. Empirically, we show that the proposed approach significantly outperforms several state-of-the-art baselines, including two recently-proposed neural network approaches, on several real-world datasets. We also provide extended experiments comparing the multinomial likelihood with other commonly used likelihood functions in the latent factor collaborative filtering literature and show favorable results. Finally, we identify the pros and cons of employing a principled Bayesian inference approach and characterize settings where it provides the most significant improvements.
150 - Jin Chen , Binbin Jin , Xu Huang 2021
Variational AutoEncoder (VAE) has been extended as a representative nonlinear method for collaborative filtering. However, the bottleneck of VAE lies in the softmax computation over all items, such that it takes linear costs in the number of items to compute the loss and gradient for optimization. This hinders the practical use due to millions of items in real-world scenarios. Importance sampling is an effective approximation method, based on which the sampled softmax has been derived. However, existing methods usually exploit the uniform or popularity sampler as proposal distributions, leading to a large bias of gradient estimation. To this end, we propose to decompose the inner-product-based softmax probability based on the inverted multi-index, leading to sublinear-time and highly accurate sampling. Based on the proposed proposals, we develop a fast Variational AutoEncoder (FastVAE) for collaborative filtering. FastVAE can outperform the state-of-the-art baselines in terms of both sampling quality and efficiency according to the experiments on three real-world datasets.
The interactions of users and items in recommender system could be naturally modeled as a user-item bipartite graph. In recent years, we have witnessed an emerging research effort in exploring user-item graph for collaborative filtering methods. Nevertheless, the formation of user-item interactions typically arises from highly complex latent purchasing motivations, such as high cost performance or eye-catching appearance, which are indistinguishably represented by the edges. The existing approaches still remain the differences between various purchasing motivations unexplored, rendering the inability to capture fine-grained user preference. Therefore, in this paper we propose a novel Multi-Component graph convolutional Collaborative Filtering (MCCF) approach to distinguish the latent purchasing motivations underneath the observed explicit user-item interactions. Specifically, there are two elaborately designed modules, decomposer and combiner, inside MCCF. The former first decomposes the edges in user-item graph to identify the latent components that may cause the purchasing relationship; the latter then recombines these latent components automatically to obtain unified embeddings for prediction. Furthermore, the sparse regularizer and weighted random sample strategy are utilized to alleviate the overfitting problem and accelerate the optimization. Empirical results on three real datasets and a synthetic dataset not only show the significant performance gains of MCCF, but also well demonstrate the necessity of considering multiple components.
Negative sampling approaches are prevalent in implicit collaborative filtering for obtaining negative labels from massive unlabeled data. As two major concerns in negative sampling, efficiency and effectiveness are still not fully achieved by recent works that use complicate structures and overlook risk of false negative instances. In this paper, we first provide a novel understanding of negative instances by empirically observing that only a few instances are potentially important for model learning, and false negatives tend to have stable predictions over many training iterations. Above findings motivate us to simplify the model by sampling from designed memory that only stores a few important candidates and, more importantly, tackle the untouched false negative problem by favouring high-variance samples stored in memory, which achieves efficient sampling of true negatives with high-quality. Empirical results on two synthetic datasets and three real-world datasets demonstrate both robustness and superiorities of our negative sampling method.
Collaborative Filtering (CF) is one of the most used methods for Recommender System. Because of the Bayesian nature and nonlinearity, deep generative models, e.g. Variational Autoencoder (VAE), have been applied into CF task, and have achieved great performance. However, most VAE-based methods suffer from matrix sparsity and consider the prior of users latent factors to be the same, which leads to poor latent representations of users and items. Additionally, most existing methods model latent factors of users only and but not items, which makes them not be able to recommend items to a new user. To tackle these problems, we propose a Neural Variational Hybrid Collaborative Filtering, NVHCF. Specifically, we consider both the generative processes of users and items, and the prior of latent factors of users and items to be side informationspecific, which enables our model to alleviate matrix sparsity and learn better latent representations of users and items. For inference purpose, we derived a Stochastic Gradient Variational Bayes (SGVB) algorithm to analytically approximate the intractable distributions of latent factors of users and items. Experiments conducted on two large datasets have showed our methods significantly outperform the state-of-the-art CF methods, including the VAE-based methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا