No Arabic abstract
We extend variational autoencoders (VAEs) to collaborative filtering for implicit feedback. This non-linear probabilistic model enables us to go beyond the limited modeling capacity of linear factor models which still largely dominate collaborative filtering research.We introduce a generative model with multinomial likelihood and use Bayesian inference for parameter estimation. Despite widespread use in language modeling and economics, the multinomial likelihood receives less attention in the recommender systems literature. We introduce a different regularization parameter for the learning objective, which proves to be crucial for achieving competitive performance. Remarkably, there is an efficient way to tune the parameter using annealing. The resulting model and learning algorithm has information-theoretic connections to maximum entropy discrimination and the information bottleneck principle. Empirically, we show that the proposed approach significantly outperforms several state-of-the-art baselines, including two recently-proposed neural network approaches, on several real-world datasets. We also provide extended experiments comparing the multinomial likelihood with other commonly used likelihood functions in the latent factor collaborative filtering literature and show favorable results. Finally, we identify the pros and cons of employing a principled Bayesian inference approach and characterize settings where it provides the most significant improvements.
This paper proposes a novel model for the rating prediction task in recommender systems which significantly outperforms previous state-of-the art models on a time-split Netflix data set. Our model is based on deep autoencoder with 6 layers and is trained end-to-end without any layer-wise pre-training. We empirically demonstrate that: a) deep autoencoder models generalize much better than the shallow ones, b) non-linear activation functions with negative parts are crucial for training deep models, and c) heavy use of regularization techniques such as dropout is necessary to prevent over-fiting. We also propose a new training algorithm based on iterative output re-feeding to overcome natural sparseness of collaborate filtering. The new algorithm significantly speeds up training and improves model performance. Our code is available at https://github.com/NVIDIA/DeepRecommender
We focus on the problem of streaming recommender system and explore novel collaborative filtering algorithms to handle the data dynamicity and complexity in a streaming manner. Although deep neural networks have demonstrated the effectiveness of recommendation tasks, it is lack of explorations on integrating probabilistic models and deep architectures under streaming recommendation settings. Conjoining the complementary advantages of probabilistic models and deep neural networks could enhance both model effectiveness and the understanding of inference uncertainties. To bridge the gap, in this paper, we propose a Coupled Variational Recurrent Collaborative Filtering (CVRCF) framework based on the idea of Deep Bayesian Learning to handle the streaming recommendation problem. The framework jointly combines stochastic processes and deep factorization models under a Bayesian paradigm to model the generation and evolution of users preferences and items popularities. To ensure efficient optimization and streaming update, we further propose a sequential variational inference algorithm based on a cross variational recurrent neural network structure. Experimental results on three benchmark datasets demonstrate that the proposed framework performs favorably against the state-of-the-art methods in terms of both temporal dependency modeling and predictive accuracy. The learned latent variables also provide visualized interpretations for the evolution of temporal dynamics.
Variational AutoEncoder (VAE) has been extended as a representative nonlinear method for collaborative filtering. However, the bottleneck of VAE lies in the softmax computation over all items, such that it takes linear costs in the number of items to compute the loss and gradient for optimization. This hinders the practical use due to millions of items in real-world scenarios. Importance sampling is an effective approximation method, based on which the sampled softmax has been derived. However, existing methods usually exploit the uniform or popularity sampler as proposal distributions, leading to a large bias of gradient estimation. To this end, we propose to decompose the inner-product-based softmax probability based on the inverted multi-index, leading to sublinear-time and highly accurate sampling. Based on the proposed proposals, we develop a fast Variational AutoEncoder (FastVAE) for collaborative filtering. FastVAE can outperform the state-of-the-art baselines in terms of both sampling quality and efficiency according to the experiments on three real-world datasets.
Collaborative Filtering aims at exploiting the feedback of users to provide personalised recommendations. Such algorithms look for latent variables in a large sparse matrix of ratings. They can be enhanced by adding side information to tackle the well-known cold start problem. While Neu-ral Networks have tremendous success in image and speech recognition, they have received less attention in Collaborative Filtering. This is all the more surprising that Neural Networks are able to discover latent variables in large and heterogeneous datasets. In this paper, we introduce a Collaborative Filtering Neural network architecture aka CFN which computes a non-linear Matrix Factorization from sparse rating inputs and side information. We show experimentally on the MovieLens and Douban dataset that CFN outper-forms the state of the art and benefits from side information. We provide an implementation of the algorithm as a reusable plugin for Torch, a popular Neural Network framework.
Collaborative filtering recommendation systems provide recommendations to users based on their own past preferences, as well as those of other users who share similar interests. The use of recommendation systems has grown widely in recent years, helping people choose which movies to watch, books to read, and items to buy. However, users are often concerned about their privacy when using such systems, and many users are reluctant to provide accurate information to most online services. Privacy-preserving collaborative filtering recommendation systems aim to provide users with accurate recommendations while maintaining certain guarantees about the privacy of their data. This survey examines the recent literature in privacy-preserving collaborative filtering, providing a broad perspective of the field and classifying the key contributions in the literature using two different criteria: the type of vulnerability they address and the type of approach they use to solve it.