No Arabic abstract
Autonomous explorative robots frequently encounter scenarios where multiple future trajectories can be pursued. Often these are cases with multiple paths around an obstacle or trajectory options towards various frontiers. Humans in such situations can inherently perceive and reason about the surrounding environment to identify several possibilities of either manoeuvring around the obstacles or moving towards various frontiers. In this work, we propose a 2 stage Convolutional Neural Network architecture which mimics such an ability to map the perceived surroundings to multiple trajectories that a robot can choose to traverse. The first stage is a Trajectory Proposal Network which suggests diverse regions in the environment which can be occupied in the future. The second stage is a Trajectory Sampling network which provides a finegrained trajectory over the regions proposed by Trajectory Proposal Network. We evaluate our framework in diverse and complicated real life settings. For the outdoor case, we use the KITTI dataset and our own outdoor driving dataset. In the indoor setting, we use an autonomous drone to navigate various scenarios and also a ground robot which can explore the environment using the trajectories proposed by our framework. Our experiments suggest that the framework is able to develop a semantic understanding of the obstacles, open regions and identify diverse trajectories that a robot can traverse. Our comparisons portray the performance gain of the proposed architecture over a diverse set of methods against which it is compared.
This work investigates an efficient trajectory generation for chasing a dynamic target, which incorporates the detectability objective. The proposed method actively guides the motion of a cinematographer drone so that the color of a target is well-distinguished against the colors of the background in the view of the drone. For the objective, we define a measure of color detectability given a chasing path. After computing a discrete path optimized for the metric, we generate a dynamically feasible trajectory. The whole pipeline can be updated on-the-fly to respond to the motion of the target. For the efficient discrete path generation, we construct a directed acyclic graph (DAG) for which a topological sorting can be determined analytically without the depth-first search. The smooth path is obtained in quadratic programming (QP) framework. We validate the enhanced performance of state-of-the-art object detection and tracking algorithms when the camera drone executes the trajectory obtained from the proposed method.
Trajectory prediction is a critical technique in the navigation of robots and autonomous vehicles. However, the complex traffic and dynamic uncertainties yield challenges in the effectiveness and robustness in modeling. We purpose a data-driven approach socially aware Kalman neural networks (SAKNN) where the interaction layer and the Kalman layer are embedded in the architecture, resulting in a class of architectures with huge potential to directly learn from high variance sensor input and robustly generate low variance outcomes. The evaluation of our approach on NGSIM dataset demonstrates that SAKNN performs state-of-the-art on prediction effectiveness in a relatively long-term horizon and significantly improves the signal-to-noise ratio of the predicted signal.
Planning high-speed trajectories for UAVs in unknown environments requires algorithmic techniques that enable fast reaction times to guarantee safety as more information about the environment becomes available. The standard approaches that ensure safety by enforcing a stop condition in the free-known space can severely limit the speed of the vehicle, especially in situations where much of the world is unknown. Moreover, the ad-hoc time and interval allocation scheme usually imposed on the trajectory also leads to conservative and slower trajectories. This work proposes FASTER (Fast and Safe Trajectory Planner) to ensure safety without sacrificing speed. FASTER obtains high-speed trajectories by enabling the local planner to optimize in both the free-known and unknown spaces. Safety is ensured by always having a safe back-up trajectory in the free-known space. The MIQP formulation proposed also allows the solver to choose the trajectory interval allocation. FASTER is tested extensively in simulation and in real hardware, showing flights in unknown cluttered environments with velocities up to 7.8m/s, and experiments at the maximum speed of a skid-steer ground robot (2m/s).
Multi-pedestrian trajectory prediction is an indispensable safety element of autonomous systems that interact with crowds in unstructured environments. Many recent efforts have developed trajectory prediction algorithms with focus on understanding social norms behind pedestrian motions. Yet we observe these works usually hold two assumptions that prevent them from being smoothly applied to robot applications: positions of all pedestrians are consistently tracked; the target agent pays attention to all pedestrians in the scene. The first assumption leads to biased interaction modeling with incomplete pedestrian data, and the second assumption introduces unnecessary disturbances and leads to the freezing robot problem. Thus, we propose Gumbel Social Transformer, in which an Edge Gumbel Selector samples a sparse interaction graph of partially observed pedestrians at each time step. A Node Transformer Encoder and a Masked LSTM encode the pedestrian features with the sampled sparse graphs to predict trajectories. We demonstrate that our model overcomes the potential problems caused by the assumptions, and our approach outperforms the related works in benchmark evaluation.
Todays robotic systems are increasingly turning to computationally expensive models such as deep neural networks (DNNs) for tasks like localization, perception, planning, and object detection. However, resource-constrained robots, like low-power drones, often have insufficient on-board compute resources or power reserves to scalably run the most accurate, state-of-the art neural network compute models. Cloud robotics allows mobile robots the benefit of offloading compute to centralized servers if they are uncertain locally or want to run more accurate, compute-intensive models. However, cloud robotics comes with a key, often understated cost: communicating with the cloud over congested wireless networks may result in latency or loss of data. In fact, sending high data-rate video or LIDAR from multiple robots over congested networks can lead to prohibitive delay for real-time applications, which we measure experimentally. In this paper, we formulate a novel Robot Offloading Problem --- how and when should robots offload sensing tasks, especially if they are uncertain, to improve accuracy while minimizing the cost of cloud communication? We formulate offloading as a sequential decision making problem for robots, and propose a solution using deep reinforcement learning. In both simulations and hardware experiments using state-of-the art vision DNNs, our offloading strategy improves vision task performance by between 1.3-2.6x of benchmark offloading strategies, allowing robots the potential to significantly transcend their on-board sensing accuracy but with limited cost of cloud communication.