Do you want to publish a course? Click here

Learning Sparse Interaction Graphs of Partially Observed Pedestrians for Trajectory Prediction

211   0   0.0 ( 0 )
 Added by Zhe Huang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Multi-pedestrian trajectory prediction is an indispensable safety element of autonomous systems that interact with crowds in unstructured environments. Many recent efforts have developed trajectory prediction algorithms with focus on understanding social norms behind pedestrian motions. Yet we observe these works usually hold two assumptions that prevent them from being smoothly applied to robot applications: positions of all pedestrians are consistently tracked; the target agent pays attention to all pedestrians in the scene. The first assumption leads to biased interaction modeling with incomplete pedestrian data, and the second assumption introduces unnecessary disturbances and leads to the freezing robot problem. Thus, we propose Gumbel Social Transformer, in which an Edge Gumbel Selector samples a sparse interaction graph of partially observed pedestrians at each time step. A Node Transformer Encoder and a Masked LSTM encode the pedestrian features with the sampled sparse graphs to predict trajectories. We demonstrate that our model overcomes the potential problems caused by the assumptions, and our approach outperforms the related works in benchmark evaluation.



rate research

Read More

98 - Ce Ju , Zheng Wang , Cheng Long 2019
Forecasting the motion of surrounding obstacles (vehicles, bicycles, pedestrians and etc.) benefits the on-road motion planning for intelligent and autonomous vehicles. Complex scenes always yield great challenges in modeling the patterns of surrounding traffic. For example, one main challenge comes from the intractable interaction effects in a complex traffic system. In this paper, we propose a multi-layer architecture Interaction-aware Kalman Neural Networks (IaKNN) which involves an interaction layer for resolving high-dimensional traffic environmental observations as interaction-aware accelerations, a motion layer for transforming the accelerations to interaction aware trajectories, and a filter layer for estimating future trajectories with a Kalman filter network. Attributed to the multiple traffic data sources, our end-to-end trainable approach technically fuses dynamic and interaction-aware trajectories boosting the prediction performance. Experiments on the NGSIM dataset demonstrate that IaKNN outperforms the state-of-the-art methods in terms of effectiveness for traffic trajectory prediction.
Understanding complex social interactions among agents is a key challenge for trajectory prediction. Most existing methods consider the interactions between pairwise traffic agents or in a local area, while the nature of interactions is unlimited, involving an uncertain number of agents and non-local areas simultaneously. Besides, they treat heterogeneous traffic agents the same, namely those among agents of different categories, while neglecting peoples diverse reaction patterns toward traffic agents in ifferent categories. To address these problems, we propose a simple yet effective Unlimited Neighborhood Interaction Network (UNIN), which predicts trajectories of heterogeneous agents in multiple categories. Specifically, the proposed unlimited neighborhood interaction module generates the fused-features of all agents involved in an interaction simultaneously, which is adaptive to any number of agents and any range of interaction area. Meanwhile, a hierarchical graph attention module is proposed to obtain category-to-category interaction and agent-to-agent interaction. Finally, parameters of a Gaussian Mixture Model are estimated for generating the future trajectories. Extensive experimental results on benchmark datasets demonstrate a significant performance improvement of our method over the state-of-the-art methods.
We present a novel trajectory prediction algorithm for pedestrians based on a personality-aware probabilistic feature map. This map is computed using a spatial query structure and each value represents the probability of the predicted pedestrian passing through various positions in the crowd space. We update this map dynamically based on the agents in the environment and prior trajectory of a pedestrian. Furthermore, we estimate the personality characteristics of each pedestrian and use them to improve the prediction by estimating the shortest path in this map. Our approach is general and works well on crowd videos with low and high pedestrian density. We evaluate our model on standard human-trajectory datasets. In practice, our prediction algorithm improves the accuracy by 5-9% over prior algorithms.
144 - Ce Ju , Zheng Wang , 2018
Trajectory prediction is a critical technique in the navigation of robots and autonomous vehicles. However, the complex traffic and dynamic uncertainties yield challenges in the effectiveness and robustness in modeling. We purpose a data-driven approach socially aware Kalman neural networks (SAKNN) where the interaction layer and the Kalman layer are embedded in the architecture, resulting in a class of architectures with huge potential to directly learn from high variance sensor input and robustly generate low variance outcomes. The evaluation of our approach on NGSIM dataset demonstrates that SAKNN performs state-of-the-art on prediction effectiveness in a relatively long-term horizon and significantly improves the signal-to-noise ratio of the predicted signal.
Forecasting the future behavior of all traffic agents in the vicinity is a key task to achieve safe and reliable autonomous driving systems. It is a challenging problem as agents adjust their behavior depending on their intentions, the others actions, and the road layout. In this paper, we propose Decoder Fusion RNN (DF-RNN), a recurrent, attention-based approach for motion forecasting. Our network is composed of a recurrent behavior encoder, an inter-agent multi-headed attention module, and a context-aware decoder. We design a map encoder that embeds polyline segments, combines them to create a graph structure, and merges their relevant parts with the agents embeddings. We fuse the encoded map information with further inter-agent interactions only inside the decoder and propose to use explicit training as a method to effectively utilize the information available. We demonstrate the efficacy of our method by testing it on the Argoverse motion forecasting dataset and show its state-of-the-art performance on the public benchmark.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا