Do you want to publish a course? Click here

Effective writing style imitation via combinatorial paraphrasing

228   0   0.0 ( 0 )
 Added by Tommi Gr\\\"ondahl
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Stylometry can be used to profile or deanonymize authors against their will based on writing style. Style transfer provides a defence. Current techniques typically use either encoder-decoder architectures or rule-based algorithms. Crucially, style transfer must reliably retain original semantic content to be actually deployable. We conduct a multifaceted evaluation of three state-of-the-art encoder-decoder style transfer techniques, and show that all fail at semantic retainment. In particular, they do not produce appropriate paraphrases, but only retain original content in the trivial case of exactly reproducing the text. To mitigate this problem we propose ParChoice: a technique based on the combinatorial application of multiple paraphrasing algorithms. ParChoice strongly outperforms the encoder-decoder baselines in semantic retainment. Additionally, compared to baselines that achieve non-negligible semantic retainment, ParChoice has superior style transfer performance. We also apply ParChoice to multi-author style imitation (not considered by prior work), where we achieve up to 75% imitation success among five authors. Furthermore, when compared to two state-of-the-art rule-based style transfer techniques, ParChoice has markedly better semantic retainment. Combining ParChoice with the best performing rule-based baseline (Mutant-X) also reaches the highest style transfer success on the Brennan-Greenstadt and Extended-Brennan-Greenstadt corpora, with much less impact on original meaning than when using the rule-based baseline techniques alone. Finally, we highlight a critical problem that afflicts all current style transfer techniques: the adversary can use the same technique for thwarting style transfer via adversarial training. We show that adding randomness to style transfer helps to mitigate the effectiveness of adversarial training.



rate research

Read More

83 - Himank Yadav , Juliang Li 2017
We present our approach for computer-aided social media text authorship attribution based on recent advances in short text authorship verification. We use various natural language techniques to create word-level and character-level models that act as hidden layers to simulate a simple neural network. The choice of word-level and character-level models in each layer was informed through validation performance. The output layer of our system uses an unweighted majority vote vector to arrive at a conclusion. We also considered writing bias in social media posts while collecting our training dataset to increase system robustness. Our system achieved a precision, recall, and F-measure of 0.82, 0.926 and 0.869 respectively.
Recent neural approaches to data-to-text generation have mostly focused on improving content fidelity while lacking explicit control over writing styles (e.g., word choices, sentence structures). More traditional systems use templates to determine the realization of text. Yet manual or automatic construction of high-quality templates is difficult, and a template acting as hard constraints could harm content fidelity when it does not match the record perfectly. We study a new way of stylistic control by using existing sentences as soft templates. That is, the model learns to imitate the writing style of any given exemplar sentence, with automatic adaptions to faithfully describe the content record. The problem is challenging due to the lack of parallel data. We develop a neural approach that includes a hybrid attention-copy mechanism, learns with weak supervisions, and is enhanced with a new content coverage constraint. We conduct experiments in restaurants and sports domains. Results show our approach achieves stronger performance than a range of comparison methods. Our approach balances well between content fidelity and style control given exemplars that match the records to varying degrees.
Authorship identification tasks, which rely heavily on linguistic styles, have always been an important part of Natural Language Understanding (NLU) research. While other tasks based on linguistic style understanding benefit from deep learning methods, these methods have not behaved as well as traditional machine learning methods in many authorship-based tasks. With these tasks becoming more and more challenging, however, traditional machine learning methods based on handcrafted feature sets are already approaching their performance limits. Thus, in order to inspire future applications of deep learning methods in authorship-based tasks in ways that benefit the extraction of stylistic features, we survey authorship-based tasks and other tasks related to writing style understanding. We first describe our survey results on the current state of research in both sets of tasks and summarize existing achievements and problems in authorship-related tasks. We then describe outstanding methods in style-related tasks in general and analyze how they are used in combination in the top-performing models. We are optimistic about the applicability of these models to authorship-based tasks and hope our survey will help advance research in this field.
85 - Shan Wu , Bo Chen , Chunlei Xin 2021
Semantic parsing is challenging due to the structure gap and the semantic gap between utterances and logical forms. In this paper, we propose an unsupervised semantic parsing method - Synchronous Semantic Decoding (SSD), which can simultaneously resolve the semantic gap and the structure gap by jointly leveraging paraphrasing and grammar constrained decoding. Specifically, we reformulate semantic parsing as a constrained paraphrasing problem: given an utterance, our model synchronously generates its canonical utterance and meaning representation. During synchronous decoding: the utterance paraphrasing is constrained by the structure of the logical form, therefore the canonical utterance can be paraphrased controlledly; the semantic decoding is guided by the semantics of the canonical utterance, therefore its logical form can be generated unsupervisedly. Experimental results show that SSD is a promising approach and can achieve competitive unsupervised semantic parsing performance on multiple datasets.
Metaphorical expressions are difficult linguistic phenomena, challenging diverse Natural Language Processing tasks. Previous works showed that paraphrasing a metaphor as its literal counterpart can help machines better process metaphors on downstream tasks. In this paper, we interpret metaphors with BERT and WordNet hypernyms and synonyms in an unsupervised manner, showing that our method significantly outperforms the state-of-the-art baseline. We also demonstrate that our method can help a machine translation system improve its accuracy in translating English metaphors to 8 target languages.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا