No Arabic abstract
The equations of electrodynamics are altered in the presence of a classical coherent axion dark matter background field, changing the dispersion relation for electromagnetic waves. Careful measurements of the frequency stability in sensitive atomic clocks could in principle provide evidence for such a background for $f_a ge 10^7$ GeV. Turning on a background magnetic field might enhance these effects in a controllable way, and interferometric measurements might also be useful for probing the time-varying photon dispersion relation that results from a coherent cosmic axion background.
Recent developments in searches for dark-matter candidates with atomic clocks are reviewed. The intended audience is the atomic clock community.
We present a detailed analysis of the effect of light Dark Matter (DM) on atomic clocks, for the case where DM mass and density are such that occupation numbers are low and DM must be considered as particles scattering off the atoms, rather than a classical field. We show that the resulting atomic clock frequency shifts are first order in the scattering amplitudes, and particularly suited to constrain DM models in the regime where the DM mass $m_chi ll$ GeV. We provide some rough order of magnitude estimates of sensitivity that can be confronted to any DM model that allows for non zero differential scattering amplitudes of the two atomic states involved in the clock.
We discuss the energy scales of the explicit breaking terms of the global symmetries USW~ needed for the quinessential axion (QA) and the ultra-light axion (ULA). The appropriate scale of QA is about $10^{8}$ GeV.
We study the dynamics of the Peccei-Quinn (PQ) phase transition for the QCD axion. In weakly coupled models the transition is typically second order except in the region of parameters where the PQ symmetry is broken through the Coleman-Weinberg mechanism. In strongly coupled realizations the transition is often first order. We show examples where the phase transition leads to strong supercooling lowering the nucleation temperature and enhancing the stochastic gravitational wave signals. The models predict a frequency peak in the range 100-1000 Hz with an amplitude that is already within the sensitivity of LIGO and can be thoroughly tested with future gravitational wave interferometers.
Particle dark matter could have a mass anywhere from that of ultralight candidates, $m_chisim 10^{-21},$eV, to scales well above the GeV. Conventional laboratory searches are sensitive to a range of masses close to the weak scale, while new techniques are required to explore candidates outside this realm. In particular lighter candidates are difficult to detect due to their small momentum. Here we study two experimental set-ups which {it do not require transfer of momentum} to detect dark matter: atomic clocks and co-magnetometers. These experiments probe dark matter that couples to the spin of matter via the very precise measurement of the energy difference between atomic states of different angular momenta. This coupling is possible (even natural) in most dark matter models, and we translate the current experimental sensitivity into implications for different dark matter models. It is found that the constraints from current atomic clocks and co-magnetometers can be competitive in the mass range $m_chisim 10^{-21}-10^3,$eV, depending on the model. We also comment on the (negligible) effect of different astrophysical neutrino backgrounds.