Do you want to publish a course? Click here

Exploring the ultra-light to sub-MeV dark matter window with atomic clocks and co-magnetometers

166   0   0.0 ( 0 )
 Added by Rodrigo Alonso Dr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Particle dark matter could have a mass anywhere from that of ultralight candidates, $m_chisim 10^{-21},$eV, to scales well above the GeV. Conventional laboratory searches are sensitive to a range of masses close to the weak scale, while new techniques are required to explore candidates outside this realm. In particular lighter candidates are difficult to detect due to their small momentum. Here we study two experimental set-ups which {it do not require transfer of momentum} to detect dark matter: atomic clocks and co-magnetometers. These experiments probe dark matter that couples to the spin of matter via the very precise measurement of the energy difference between atomic states of different angular momenta. This coupling is possible (even natural) in most dark matter models, and we translate the current experimental sensitivity into implications for different dark matter models. It is found that the constraints from current atomic clocks and co-magnetometers can be competitive in the mass range $m_chisim 10^{-21}-10^3,$eV, depending on the model. We also comment on the (negligible) effect of different astrophysical neutrino backgrounds.



rate research

Read More

We present a detailed analysis of the effect of light Dark Matter (DM) on atomic clocks, for the case where DM mass and density are such that occupation numbers are low and DM must be considered as particles scattering off the atoms, rather than a classical field. We show that the resulting atomic clock frequency shifts are first order in the scattering amplitudes, and particularly suited to constrain DM models in the regime where the DM mass $m_chi ll$ GeV. We provide some rough order of magnitude estimates of sensitivity that can be confronted to any DM model that allows for non zero differential scattering amplitudes of the two atomic states involved in the clock.
123 - A. Derevianko 2016
Recent developments in searches for dark-matter candidates with atomic clocks are reviewed. The intended audience is the atomic clock community.
Direct detection experiments turn to lose sensitivity of searching for a sub-MeV light dark matter candidate due to the threshold of recoil energy. However, such light dark matter particles can be accelerated by energetic cosmic-rays such that they can be detected with existing detectors. We derive the constraints on the scattering of a boosted light dark matter and electron from the XENON100/1T experiment. We illustrate that the energy dependence of the cross section plays a crucial role in improving both the detection sensitivity and also the complementarity of direct detection and other experiments.
178 - A. Derevianko , M. Pospelov 2013
The cosmological applications of atomic clocks so far have been limited to searches of the uniform-in-time drift of fundamental constants. In this paper, we point out that a transient in time change of fundamental constants can be induced by dark matter objects that have large spatial extent, and are built from light non-Standard Model fields. The stability of this type of dark matter can be dictated by the topological reasons. We point out that correlated networks of atomic clocks, some of them already in existence, can be used as a powerful tool to search for the topological defect dark matter, thus providing another important fundamental physics application to the ever-improving accuracy of atomic clocks. During the encounter with a topological defect, as it sweeps through the network, initially synchronized clocks will become desynchronized. Time discrepancies between spatially-separated clocks are expected to exhibit a distinct signature, encoding defects space structure and its interaction strength with the Standard Model fields.
We study a new class of signals where fermionic dark matter is absorbed by bound electron targets. Fermionic absorption signals in direct detection and neutrino experiments are sensitive to dark matter with sub-MeV mass, probing a region of parameter space in which dark matter is otherwise challenging to detect. We calculate the rate and energy deposition spectrum in xenon-based detectors, making projections for current and future experiments. We present two possible models that display fermionic absorption by electrons and study the detection prospects in light of other constraints.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا