Do you want to publish a course? Click here

Gravitational Waves from Supercool Axions

89   0   0.0 ( 0 )
 Added by Andrea Tesi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamics of the Peccei-Quinn (PQ) phase transition for the QCD axion. In weakly coupled models the transition is typically second order except in the region of parameters where the PQ symmetry is broken through the Coleman-Weinberg mechanism. In strongly coupled realizations the transition is often first order. We show examples where the phase transition leads to strong supercooling lowering the nucleation temperature and enhancing the stochastic gravitational wave signals. The models predict a frequency peak in the range 100-1000 Hz with an amplitude that is already within the sensitivity of LIGO and can be thoroughly tested with future gravitational wave interferometers.



rate research

Read More

We consider the electroweak phase transition in the conformal extension of the standard model known as SU(2)cSM. Apart from the standard model particles, this model contains an additional scalar and gauge field that are both charged under the hidden SU(2)$_X$. This model generically exhibits a very strong phase transition that proceeds after a large amount of supercooling. We estimate the gravitational wave spectrum produced in this model and show that its amplitude and frequency fall within the observational window of LISA. We also discuss potential pitfalls and relevant points of improvement required to attain reliable estimates of the gravitational wave production in this - as well as in more general - class of models. In order to improve perturbativity during the early stages of transition that ends with bubble nucleation, we solve a thermal gap equation in the scalar sector inspired by the 2PI effective action formalism.
Dark Yang-Mills sectors, which are ubiquitous in the string landscape, may be reheated above their critical temperature and subsequently go through a confining first-order phase transition that produces stochastic gravitational waves in the early universe. Taking into account constraints from lattice and from Yang-Mills (center and Weyl) symmetries, we use a phenomenological model to construct an effective potential of the semi quark-gluon plasma phase, from which we compute the gravitational wave signal produced during confinement for numerous gauge groups. The signal is maximized when the dark sector dominates the energy density of the universe at the time of the phase transition. In that case, we find that it is within reach of the next-to-next generation of experiments (BBO, DECIGO) for a range of dark confinement scales near the weak scale.
Spectra of stochastic gravitational waves (GW) generated in cosmological first-order phase transitions are computed within strongly correlated theories with a dual holographic description. The theories are mostly used as models of dark sectors. In particular, we consider the so-called Witten-Sakai-Sugimoto model, a $SU(N)$ gauge theory coupled to different matter fields in both the fundamental and the adjoint representations. The model has a well-known top-down holographic dual description which allows us to perform reliable calculations in the strongly coupled regime. We consider the GW spectra from bubble collisions and sound waves arising from two different kinds of first-order phase transitions: a confinement/deconfinement one and a chiral symmetry breaking/restoration one. Depending on the model parameters, we find that the GW spectra may fall within the sensibility region of ground-based and space-based interferometers, as well as of Pulsar Timing Arrays. In the latter case, the signal could be compatible with the recent potential observation by NANOGrav. When the two phase transitions happen at different critical temperatures, characteristic spectra with double frequency peaks show up. Moreover, in this case we explicitly show how to correct the redshift factors appearing in the formulae for the GW power spectra to account for the fact that adiabatic expansion from the first transition to the present times cannot be assumed anymore.
We present the relation between the sphaleron energy and the gravitational wave signals from a first order electroweak phase transition. The crucial ingredient is the scaling law between the sphaleron energy at the temperature of the phase transition and that at zero temperature. We estimate the baryon number preservation criterion, and observe that for a sufficiently strong phase transition, it is possible to probe the electroweak sphaleron using measurements of future space-based gravitational wave detectors.
79 - Kai Schmitz 2020
Gravitational waves (GWs) produced by sound waves in the primordial plasma during a strong first-order phase transition in the early Universe are going to be a main target of the upcoming Laser Interferometer Space Antenna (LISA) experiment. In this short note, I draw a global picture of LISAs expected sensitivity to this type of GW signal, based on the concept of peak-integrated sensitivity curves (PISCs) recently introduced in [1909.11356, 2002.04615]. In particular, I use LISAs PISC to perform a systematic comparison of several thousands of benchmark points in ten different particle physics models in a compact fashion. The presented analysis (i) retains the complete information on the optimal signal-to-noise ratio, (ii) allows for different power-law indices describing the spectral shape of the signal, (iii) accounts for galactic confusion noise from compact binaries, and (iv) exhibits the dependence of the expected sensitivity on the collected amount of data. An important outcome of this analysis is that, for the considered set of models, galactic confusion noise typically reduces the number of observable scenarios by roughly a factor two, more or less independent of the observing time. The numerical results presented in this paper are also available on Zenodo [http://doi.org/10.5281/zenodo.3837877].
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا