No Arabic abstract
We consider a two-layer multiplex network of diffusively coupled FitzHugh-Nagumo (FHN) neurons in the excitable regime. It is shown, in contrast to SISR in a single isolated FHN neuron, that the maximum noise amplitude at which SISR occurs in the network of coupled FHN neurons is controllable, especially in the regime of strong coupling forces and long time delays. In order to use SISR in the first layer of the multiplex network to control CR in the second layer, we first choose the control parameters of the second layer in isolation such that in one case CR is poor and in another case, non-existent. It is then shown that a pronounced SISR cannot only significantly improve a poor CR, but can also induce a pronounced CR, which was non-existent in the isolated second layer. In contrast to strong intra-layer coupling forces, strong inter-layer coupling forces are found to enhance CR. While long inter-layer time delays just as long intra-layer time delays, deteriorates CR. Most importantly, we find that in a strong inter-layer coupling regime, SISR in the first layer performs better than CR in enhancing CR in the second layer. But in a weak inter-layer coupling regime, CR in the first layer performs better than SISR in enhancing CR in the second layer. Our results could find novel applications in noisy neural network dynamics and engineering.
We study the dynamics of two neuronal populations weakly and mutually coupled in a multiplexed ring configuration. We simulate the neuronal activity with the stochastic FitzHugh-Nagumo (FHN) model. The two neuronal populations perceive different levels of noise: one population exhibits spiking activity induced by supra-threshold noise (layer 1), while the other population is silent in the absence of inter-layer coupling because its own level of noise is sub-threshold (layer 2). We find that, for appropriate levels of noise in layer 1, weak inter-layer coupling can induce coherence resonance (CR), anti-coherence resonance (ACR) and inverse stochastic resonance (ISR) in layer 2. We also find that a small number of randomly distributed inter-layer links are sufficient to induce these phenomena in layer 2. Our results hold for small and large neuronal populations.
We demonstrate that chimera behavior can be observed in nonlocally coupled networks of excitable systems in the presence of noise. This phenomenon is distinct from classical chimeras, which occur in deterministic oscillatory systems, and it combines temporal features of coherence resonance, i.e., the constructive role of noise, and spatial properties of chimera states, i.e., coexistence of spatially coherent and incoherent domains in a network of identical elements. Coherence-resonance chimeras are associated with alternating switching of the location of coherent and incoherent domains, which might be relevant in neuronal networks.
The increasing capacity of modern computers, driven by Moores Law, is accompanied by smaller noise margins and higher error rates. In this paper we propose a memory device, consisting of a ring of two identical overdamped bistable forward-coupled oscillators, which may serve as a building block in a larger scale solution to this problem. We show that such a system is capable of storing one bit and its performance improves with the addition of noise. The proposed device can be regarded as asynchronous, in the sense that stored information can be retrieved at any time and, after a certain synchronization time, the probability of erroneous retrieval does not depend on the interrogated oscillator. We characterize memory persistence time and show it to be maximized for the same noise range that both minimizes the probability of error and ensures synchronization. We also present experimental results for a hard-wired version of the proposed memory, consisting of a loop of two Schmitt triggers. We show that this device is capable of storing one bit and does so more efficiently in the presence of noise.
Combined effects of the damping and forcing in the underdamped time-delayed Duffing oscillator are considered in this paper. We analyze the generation of a certain damping-induced unpredictability, due to the gradual suppression of interwell oscillations. We find the minimal amount of the forcing amplitude and the right forcing frequency to revert the effect of the dissipation, so that the interwell oscillations can be restored, for different time delay values. This is achieved by using the delay-induced resonance, in which the time delay replaces one of the two periodic forcings present in the vibrational resonance. A discussion in terms of the time delay of the critical values of the forcing for which the delay-induced resonance can tame the dissipation effect is finally carried out.
Collective electron transport causes a weakly coupled semiconductor superlattice under dc voltage bias to be an excitable system with $2N+2$ degrees of freedom: electron densities and fields at $N$ superlattice periods plus the total current and the field at the injector. External noise of sufficient amplitude induces regular current self-oscillations (coherence resonance) in states that are stationary in the absence of noise. Numerical simulations show that these oscillations are due to the repeated nucleation and motion of charge dipole waves that form at the emitter when the current falls below a critical value. At the critical current, the well-to-well tunneling current intersects the contact load line. We have determined the device-dependent critical current for the coherence resonance from experiments and numerical simulations. We have also described through numerical simulations how a coherence resonance triggers a stochastic resonance when its oscillation mode becomes locked to a weak ac external voltage signal. Our results agree with the experimental observations.