No Arabic abstract
We study the dynamics of two neuronal populations weakly and mutually coupled in a multiplexed ring configuration. We simulate the neuronal activity with the stochastic FitzHugh-Nagumo (FHN) model. The two neuronal populations perceive different levels of noise: one population exhibits spiking activity induced by supra-threshold noise (layer 1), while the other population is silent in the absence of inter-layer coupling because its own level of noise is sub-threshold (layer 2). We find that, for appropriate levels of noise in layer 1, weak inter-layer coupling can induce coherence resonance (CR), anti-coherence resonance (ACR) and inverse stochastic resonance (ISR) in layer 2. We also find that a small number of randomly distributed inter-layer links are sufficient to induce these phenomena in layer 2. Our results hold for small and large neuronal populations.
We consider a two-layer multiplex network of diffusively coupled FitzHugh-Nagumo (FHN) neurons in the excitable regime. It is shown, in contrast to SISR in a single isolated FHN neuron, that the maximum noise amplitude at which SISR occurs in the network of coupled FHN neurons is controllable, especially in the regime of strong coupling forces and long time delays. In order to use SISR in the first layer of the multiplex network to control CR in the second layer, we first choose the control parameters of the second layer in isolation such that in one case CR is poor and in another case, non-existent. It is then shown that a pronounced SISR cannot only significantly improve a poor CR, but can also induce a pronounced CR, which was non-existent in the isolated second layer. In contrast to strong intra-layer coupling forces, strong inter-layer coupling forces are found to enhance CR. While long inter-layer time delays just as long intra-layer time delays, deteriorates CR. Most importantly, we find that in a strong inter-layer coupling regime, SISR in the first layer performs better than CR in enhancing CR in the second layer. But in a weak inter-layer coupling regime, CR in the first layer performs better than SISR in enhancing CR in the second layer. Our results could find novel applications in noisy neural network dynamics and engineering.
We present a study on the selection of a variety of activity patterns among neurons that are connected in multiplex framework, with neurons on two layers with different functional couplings. With Hindmarsh-Rose model for the dynamics of single neurons, we analyze the possible patterns of dynamics in each layer separately, and report emergent patterns of activity like anti-phase oscillations in multi-clusters with phase regularities and enhanced amplitude and frequency with mixed mode oscillations when the connections are inhibitory. When they are multiplexed with neurons of one layer coupled with excitatory synaptic coupling and neurons of the other layer coupled with inhibitory synaptic coupling, we observe transfer or selection of interesting patterns of collective behaviour between the layers, inducing anti-phase oscillations and multi-cluster oscillations. While the revival of oscillations occurs in the layer with excitatory coupling, the transition from anti-phase to in-phase and vice versa is observed in the other layer with inhibitory synaptic coupling. We also discuss how the selection of these patterns can be controlled by tuning the intra-layer or inter-layer coupling strengths or increasing the range of non-local coupling. With one layer having electrical coupling while the other synaptic coupling of excitatory(inhibitory)type, we find in-phase(anti-phase) synchronized patterns of activity among neurons in both layers.
It is known that intra-layer adaptive coupling among connected oscillators instigates explosive synchronization (ES) in multilayer networks. Taking an altogether different cue in the present work, we consider inter-layer adaptive coupling in a multiplex network of phase oscillators and show that the scheme gives rise to ES with an associated hysteresis irrespective of the network architecture of individual layers. The hysteresis is shaped by the inter-layer coupling strength and the frequency mismatch between the mirror nodes. We provide rigorous mean-field analytical treatment for the measure of global coherence and manifest they are in a good match with respective numerical assessments. Moreover, the analytical predictions provide a complete insight into how adaptive multiplexing suppresses the formation of a giant cluster, eventually giving birth to ES. The study will help in spotlighting the role of multiplexing in the emergence of ES in real-world systems represented by multilayer architecture. Particularly, it is relevant to those systems which have limitations towards change in intra-layer coupling strength.
This Letter investigates the nature of synchronization in multilayered and multiplexed populations in which the interlayer interactions are randomly pinned. First, we show that a multilayer network constructed by setting up all-to-all interlayer connections between the two populations leads to explosive synchronization in the two populations successively, leading to the coexistence of coherent and incoherent populations forming chimera states. Second, a multiplex formation of the two populations in which only the mirror nodes are interconnected espouses explosive transitions in the two populations concurrently. The emergence of explosive synchronization is substantiated with rigorous mean-field calculations demonstrating the existence of a bistable region. The random pinning in the interlayer interactions concerns the practical problems where the impact of dynamics of one network on that of other interconnected networks remains elusive, as is the case for many real-world systems.
We demonstrate that chimera behavior can be observed in nonlocally coupled networks of excitable systems in the presence of noise. This phenomenon is distinct from classical chimeras, which occur in deterministic oscillatory systems, and it combines temporal features of coherence resonance, i.e., the constructive role of noise, and spatial properties of chimera states, i.e., coexistence of spatially coherent and incoherent domains in a network of identical elements. Coherence-resonance chimeras are associated with alternating switching of the location of coherent and incoherent domains, which might be relevant in neuronal networks.