Do you want to publish a course? Click here

Phase domain boundary motion and memristance in gradient-doped FeRh nanopillars induced by spin injection

88   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The B2-ordered alloy FeRh shows a metamagnetic phase transition, transforming from antiferromagnetic (AF) to ferromagnetic (FM) order at a temperature $T_mathrm{t} sim 380 $~K in bulk. As well as temperature, the phase transition can be triggered by many means such as strain, chemical doping, or magnetic or electric fields. Its first-order nature means that phase coexistence is possible. Here we show that a phase boundary in a 300~nm diameter nanopillar, controlled by a doping gradient during film growth, is moved by an electrical current in the direction of electron flow. We attribute this to spin injection from one magnetically ordered phase region into the other driving the phase transition in a region just next to the phase boundary. The associated change in resistance of the nanopillar shows memristive properties, suggesting potential applications as memory cells or artificial synapses in neuromorphic computing schemes.



rate research

Read More

Spin-wave resonance measurements were performed in the mixed magnetic phase regime of a Pd-doped FeRh epilayer that appears as the first-order ferromagnetic-antiferromagnetic phase transition takes place. It is seen that the measured value of the exchange stiffness is suppressed throughout the measurement range when compared to the expected value of the fully ferromagnetic regime, extracted via the independent means of a measurement of the Curie point, for only slight changes in the ferromagnetic volume fraction. This behavior is attributed to the influence of the antiferromagnetic phase: inspired by previous experiments that show ferromagnetism to be most persistent at the surfaces and interfaces of FeRh thin films, we modelled the antiferromagnetic phase as forming a thin layer in the middle of the epilayer through which the two ferromagnetic layers are coupled up to a certain critical thickness. The development of this exchange stiffness is then consistent with that expected from the development of an exchange coupling across the magnetic phase boundary, as a consequence of a thickness dependent phase transition taking place in the antiferromagnetic regions and is supported by complimentary computer simulations of atomistic spin-dynamics. The development of the Gilbert damping parameter extracted from the ferromagnetic resonance investigations is consistent with this picture.
The antiferromagnetic to ferromagnetic phase transition in B2-ordered FeRh is imaged in laterally confined nanopatterned islands using photoemission electron microscopy with x-ray magnetic circular dichroism contrast. The resulting magnetic images directly detail the progression in the shape and size of the FM phase domains during heating and cooling through the transition. In 5 um square islands this domain development during heating is shown to proceed in three distinct modes: nucleation, growth, and merging, each with subsequently greater energy costs. In 0.5 um islands, which are smaller than the typical final domain size, the growth mode is stunted and the transition temperature was found to be reduced by 20 K. The modification to the transition temperature is found by high resolution scanning transmission electron microscopy to be due to a 100 nm chemically disordered edge grain present as a result of ion implantation damage during the patterning. FeRh has unique possibilities for magnetic memory applications; the inevitable changes to its magnetic properties due to subtractive nanofabrication will need to be addressed in future work in order to progress from sheet films to suitable patterned devices.
We formulate a theory on the dynamics of conduction electrons in the presence of moving magnetic textures in ferromagnetic materials. We show that the variation of local magnetization in both space and time gives rise to topological fields, which induce electromotive forces on the electrons. Universal results are obtained for the emf induced by both transverse and vortex domain walls traveling in a magnetic film strip, and their measurement may provide clear characterization on the motion of such walls.
We find that conjugated polymers can undergo reversible structural phase transitions during electrochemical oxidation and ion injection. We study poly[2,5-bis(thiophenyl)-1,4-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzene] (PB2T-TEG), a conjugated polymer with glycolated side chains. Using grazing incidence wide angle X-ray scattering (GIWAXS), we show that, in contrast to previously known polymers, this polymer switches between two structurally distinct crystalline phases associated with electrochemical oxidation/reduction in an aqueous electrolyte. Importantly, we show that this unique phase change behavior has important physical consequences for ion transport. Notably, using moving front experiments visualized by both optical microscopy and super-resolution photoinduced force microscopy (PiFM), we show that a propagating ion front in PB2T-TEG exhibits non-Fickian transport, retaining a sharp step-edge profile, in stark contrast to the Fickian diffusion more commonly observed. This structural phase transition is reminiscent of those accompanying ion uptake in inorganic materials like LiFePO$_{4}$. We propose that engineering similar properties in future conjugated polymers may enable the realization of new materials with superior performance in electrochemical energy storage or neuromorphic memory applications.
185 - J. Grollier 2002
We present experimental results on the displacement of a domain wall by injection of a dc current through the wall. The samples are 1 micron wide long stripes of a CoO/Co/Cu/NiFe classical spin valve structure. The stripes have been patterned by electron beam lithography. A neck has been defined at 1/3 of the total length of the stripe and is a pinning center for the domain walls, as shown by the steps of the giant magnetoresistance curves at intermediate levels (1/3 or 2/3) between the resistances corresponding to the parallel and antiparallel configurations. We show by electric transport measurements that, once a wall is trapped, it can be moved by injecting a dc current higher than a threshold current of the order of magnitude of 10^7 A/cm^2. We discuss the different possible origins of this effect, i.e. local magnetic field created by the current and/or spin transfer from spin polarized current.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا