This paper presents a novel parameter calibration approach for power system stability models using automatic data generation and advanced deep learning technology. A PMU-measurement-based event playback approach is used to identify potential inaccurate parameters and automatically generate extensive simulation data, which are used for training a convolutional neural network (CNN). The accurate parameters will be predicted by the well-trained CNN model and validated by original PMU measurements. The accuracy and effectiveness of the proposed deep learning approach have been validated through extensive simulation and field data.
We propose a novel neural network embedding approach to model power transmission grids, in which high voltage lines are disconnected and reconnected with one-another from time to time, either accidentally or willfully. We call our architeture LEAP net, for Latent Encoding of Atypical Perturbation. Our method implements a form of transfer learning, permitting to train on a few source domains, then generalize to new target domains, without learning on any example of that domain. We evaluate the viability of this technique to rapidly assess cu-rative actions that human operators take in emergency situations, using real historical data, from the French high voltage power grid.
Scenario reduction is an important topic in stochastic programming problems. Due to the random behavior of load and renewable energy, stochastic programming becomes a useful technique to optimize power systems. Thus, scenario reduction gets more attentions in recent years. Many scenario reduction methods have been proposed to reduce the scenario set in a fast speed. However, the speed of scenario reduction is still very slow, in which it takes at least several seconds to several minutes to finish the reduction. This limitation of speed prevents stochastic programming to be implemented in real-time optimal control problems. In this paper, a fast scenario reduction method based on deep learning is proposed to solve this problem. Inspired by the deep learning based image process, recognition and generation methods, the scenario data are transformed into a 2D image-like data and then to be fed into a deep convolutional neural network (DCNN). The output of the DCNN will be an image of the reduced scenario set. Since images can be processed in a very high speed by neural networks, the scenario reduction by neural network can also be very fast. The results of the simulation show that the scenario reduction with the proposed DCNN method can be completed in very high speed.
The dynamic response of power grids to small disturbances influences their overall stability. This paper examines the effect of network topology on the linearized time-invariant dynamics of electric power systems. The proposed framework utilizes ${cal H}_2$-norm based stability metrics to study the optimal placement of lines on existing networks as well as the topology design of new networks. The design task is first posed as an NP-hard mixed-integer nonlinear program (MINLP) that is exactly reformulated as a mixed-integer linear program (MILP) using McCormick linearization. To improve computation time, graph-theoretic properties are exploited to derive valid inequalities (cuts) and tighten bounds on the continuous optimization variables. Moreover, a cutting plane generation procedure is put forth that is able to interject the MILP solver and augment additional constraints to the problem on-the-fly. The efficacy of our approach in designing optimal grid topologies is demonstrated through numerical tests on the IEEE 39-bus network.
Taking full advantage of synchrophasors provided by GPS-based wide-area measurement system (WAMS), a novel VBpMKL-based transient stability assessment (TSA) method through multifeature fusion is proposed in this paper. First, a group of classification features reflecting the transient stability characteristics of power systems are extracted from synchrophasors, and according to the different stages of the disturbance process they are broken into three nonoverlapped subsets; then a VBpMKL-based TSA model is built using multifeature fusion through combining feature spaces corresponding to each feature subset; and finally application of the proposed model to the IEEE 39-bus system and a real-world power system is demonstrated. The novelty of the proposed approach is that it improves the classification accuracy and reliability of TSA using multifeature fusion with synchrophasors. The application results on the test systems verify the effectiveness of the proposal.
In the paper we study a deep learning based method to solve the multicell power control problem for sum rate maximization subject to per-user rate constraints and per-base station (BS) power constraints. The core difficulty of this problem is how to ensure that the learned power control results by the deep neural network (DNN) satisfy the per-user rate constraints. To tackle the difficulty, we propose to cascade a projection block after a traditional DNN, which projects the infeasible power control results onto the constraint set. The projection block is designed based on a geometrical interpretation of the constraints, which is of low complexity, meeting the real-time requirement of online applications. Explicit-form expression of the backpropagated gradient is derived for the proposed projection block, with which the DNN can be trained to directly maximize the sum rate via unsupervised learning. We also develop a heuristic implementation of the projection block to reduce the size of DNN. Simulation results demonstrate the advantages of the proposed method over existing deep learning and numerical optimization~methods, and show the robustness of the proposed method with the model mismatch between training and testing~datasets.