No Arabic abstract
In the paper we study a deep learning based method to solve the multicell power control problem for sum rate maximization subject to per-user rate constraints and per-base station (BS) power constraints. The core difficulty of this problem is how to ensure that the learned power control results by the deep neural network (DNN) satisfy the per-user rate constraints. To tackle the difficulty, we propose to cascade a projection block after a traditional DNN, which projects the infeasible power control results onto the constraint set. The projection block is designed based on a geometrical interpretation of the constraints, which is of low complexity, meeting the real-time requirement of online applications. Explicit-form expression of the backpropagated gradient is derived for the proposed projection block, with which the DNN can be trained to directly maximize the sum rate via unsupervised learning. We also develop a heuristic implementation of the projection block to reduce the size of DNN. Simulation results demonstrate the advantages of the proposed method over existing deep learning and numerical optimization~methods, and show the robustness of the proposed method with the model mismatch between training and testing~datasets.
In this work we consider a multiple-input multiple-output (MIMO) dual-function radar-communication (DFRC) system that employs an orthogonal frequency division multiplexing (OFDM) and a differential phase shift keying (DPSK) modulation, and study the design of the radiated waveforms and of the receive filters employed by the radar and the users. The approach is communication-centric, in the sense that a radar-oriented objective is optimized under constraints on the average transmit power, the power leakage towards specific directions, and the error rate of each user, thus safeguarding the communication quality of service (QoS). We adopt a unified design approach allowing a broad family of radar objectives, including both estimation- and detection-oriented merit functions. We devise a suboptimal solution based on alternating optimization of the involved variables, a convex restriction of the feasible search set, and minorization-maximization, offering a single algorithm for all of the radar merit functions in the considered family. Finally, the performance is inspected through numerical examples.
Modulation classification, an intermediate process between signal detection and demodulation in a physical layer, is now attracting more interest to the cognitive radio field, wherein the performance is powered by artificial intelligence algorithms. However, most existing conventional approaches pose the obstacle of effectively learning weakly discriminative modulation patterns. This paper proposes a robust modulation classification method by taking advantage of deep learning to capture the meaningful information of modulation signal at multi-scale feature representations. To this end, a novel architecture of convolutional neural network, namely Chain-Net, is developed with various asymmetric kernels organized in two processing flows and associated via depth-wise concatenation and element-wise addition for optimizing feature utilization. The network is evaluated on a big dataset of 14 challenging modulation formats, including analog and high-order digital techniques. The simulation results demonstrate that Chain-Net robustly classifies the modulation of radio signals suffering from a synthetic channel deterioration and further performs better than other deep networks.
Due to the continuous advancements of orthogonal frequency division multiplexing (OFDM) and multiple antenna techniques, multiuser multiple input multiple output (MU-MIMO) OFDM is a key enabler of both fourth and fifth generation networks. In this paper, we consider the problem of weighted sum-rate maximization under latency constraints in finite buffer multicell MU-MIMO OFDM systems. Unlike previous works, the optimization variables include the transceiver beamforming vectors, the scheduled packet size and the resources in the frequency and power domains. This problem is motivated by the observation that multicell MU-MIMO OFDM systems serve multiple quality of service classes and the system performance depends critically on both the transceiver design and the scheduling algorithm. Since this problem is non-convex, we resort to the max-plus queuing method and successive convex approximation. We propose both centralized and decentralized solutions, in which practical design aspects, such as signaling overhead, are considered. Finally, we compare the proposed framework with state-of-the-art algorithms in relevant scenarios, assuming a realistic channel model with space, frequency and time correlations. Numerical results indicate that our design provides significant gains over designs based on the wide-spread saturated buffers assumption, while also outperforming algorithms that consider a finite-buffer model.
Rate-splitting multiple access (RSMA) is a general multiple access scheme for downlink multi-antenna systems embracing both classical spatial division multiple access and more recent non-orthogonal multiple access. Finding a linear precoding strategy that maximizes the sum spectral efficiency of RSMA is a challenging yet significant problem. In this paper, we put forth a novel precoder design framework that jointly finds the linear precoders for the common and private messages for RSMA. Our approach is first to approximate the non-smooth minimum function part in the sum spectral efficiency of RSMA using a LogSumExp technique. Then, we reformulate the sum spectral efficiency maximization problem as a form of the log-sum of Rayleigh quotients to convert it into a tractable non-convex optimization problem. By interpreting the first-order optimality condition of the reformulated problem as an eigenvector-dependent nonlinear eigenvalue problem, we reveal that a leading eigenvector is a local optimal solution. To find the leading eigenvector, we propose a computationally efficient algorithm inspired by a power iteration method. Simulation results show that the proposed RSMA transmission strategy provides significant improvement in the sum spectral efficiency compared to the state-of-the-art RSMA transmission methods, while requiring considerably less computational complexity.
In this paper, we investigate the downlink transmission of a multiuser multiple-input single-output (MISO) channel under a symbol-level precoding (SLP) scheme, having imperfect channel knowledge at the transmitter. In defining the SLP problem, a general category of constructive interference regions (CIR) called distance preserving CIR (DPCIR) is adopted. In particular, we are interested in the robust SLP design minimizing the total transmit power while satisfying the users quality-of-service (QoS) requirements. We consider two common models for the channel uncertainty region, namely, norm-bounded spherical and stochastic. For the spherical uncertainty model, a worst-case robust precoder is proposed, while for the stochastic uncertainties, we define a convex optimization problem with probabilistic constraints. We simulate the performance of the proposed robust approaches, and compare them with the existing methods. Through the simulation results, we also show that there is an essential trade-off between the two robust approaches.