No Arabic abstract
We investigate the isogeometric analysis for surface PDEs based on the extended Loop subdivision approach. The basis functions consisting of quartic box-splines corresponding to each subdivided control mesh are utilized to represent the geometry exactly, and construct the solution space for dependent variables as well, which is consistent with the concept of isogeometric analysis. The subdivision process is equivalent to the $h$-refinement of NURBS-based isogeometric analysis. The performance of the proposed method is evaluated by solving various surface PDEs, such as surface Laplace-Beltrami harmonic/biharmonic/triharmonic equations, which are defined on different limit surfaces of the extended Loop subdivision for different initial control meshes. Numerical experiments demonstrate that the proposed method has desirable performance in terms of the accuracy, convergence and computational cost for solving the above surface PDEs defined on both open and closed surfaces. The proposed approach is proved to be second-order accuracy in the sense of $L^2$-norm by theoretical and/or numerical results, which is also outperformed over the standard linear finite element by several numerical comparisons.
We introduce a coupled finite and boundary element formulation for acoustic scattering analysis over thin shell structures. A triangular Loop subdivision surface discretisation is used for both geometry and analysis fields. The Kirchhoff-Love shell equation is discretised with the finite element method and the Helmholtz equation for the acoustic field with the boundary element method. The use of the boundary element formulation allows the elegant handling of infinite domains and precludes the need for volumetric meshing. In the present work the subdivision control meshes for the shell displacements and the acoustic pressures have the same resolution. The corresponding smooth subdivision basis functions have the $C^1$ continuity property required for the Kirchhoff-Love formulation and are highly efficient for the acoustic field computations. We validate the proposed isogeometric formulation through a closed-form solution of acoustic scattering over a thin shell sphere. Furthermore, we demonstrate the ability of the proposed approach to handle complex geometries with arbitrary topology that provides an integrated isogeometric design and analysis workflow for coupled structural-acoustic analysis of shells.
This work is motivated by the difficulty in assembling the Galerkin matrix when solving Partial Differential Equations (PDEs) with Isogeometric Analysis (IGA) using B-splines of moderate-to-high polynomial degree. To mitigate this problem, we propose a novel methodology named CossIGA (COmpreSSive IsoGeometric Analysis), which combines the IGA principle with CORSING, a recently introduced sparse recovery approach for PDEs based on compressive sensing. CossIGA assembles only a small portion of a suitable IGA Petrov-Galerkin discretization and is effective whenever the PDE solution is sufficiently sparse or compressible, i.e., when most of its coefficients are zero or negligible. The sparsity of the solution is promoted by employing a multilevel dictionary of B-splines as opposed to a basis. Thanks to sparsity and the fact that only a fraction of the full discretization matrix is assembled, the proposed technique has the potential to lead to significant computational savings. We show the effectiveness of CossIGA for the solution of the 2D and 3D Poisson equation over nontrivial geometries by means of an extensive numerical investigation.
An isogeometric approach for solving the Laplace-Beltrami equation on a two-dimensional manifold embedded in three-dimensional space using a Galerkin method based on Catmull-Clark subdivision surfaces is presented and assessed. The scalar-valued Laplace-Beltrami equation requires only C0 continuity and is adopted to elucidate key features and properties of the isogeometric method using Catmull-Clark subdivision surfaces. Catmull-Clark subdivision bases are used to discretise both the geometry and the physical field. A fitting method generates control meshes to approximate any given geometry with Catmull-Clark subdivision surfaces. The performance of the Catmull-Clark subdivision method is compared to the conventional finite element method. Subdivision surfaces without extraordinary vertices show the optimal convergence rate. However, extraordinary vertices introduce error, which decreases the convergence rate. A comparative study shows the effect of the number and valences of the extraordinary vertices on accuracy and convergence. An adaptive quadrature scheme is shown to reduce the error.
In this paper, we propose a stochastic geometric iterative method to approximate the high-resolution 3D models by finite Loop subdivision surfaces. Given an input mesh as the fitting target, the initial control mesh is generated using the mesh simplification algorithm. Then, our method adjusts the control mesh iteratively to make its finite Loop subdivision surface approximates the input mesh. In each geometric iteration, we randomly select part of points on the subdivision surface to calculate the difference vectors and distribute the vectors to the control points. Finally, the control points are updated by adding the weighted average of these difference vectors. We prove the convergence of our method and verify it by demonstrating error curves in the experiment. In addition, compared with an existing geometric iterative method, our method has a faster fitting speed and higher fitting precision.
The fast assembling of stiffness and mass matrices is a key issue in isogeometric analysis, particularly if the spline degree is increased. We present two algorithms based on the idea of sum factorization, one for matrix assembling and one for matrix-free methods, and study the behavior of their computational complexity in terms of the spline order $p$. Opposed to the standard approach, these algorithms do not apply the idea element-wise, but globally or on macro-elements. If this approach is applied to Gauss quadrature, the computational complexity grows as $p^{d+2}$ instead of $p^{2d+1}$ as previously achieved.