We introduce a coupled finite and boundary element formulation for acoustic scattering analysis over thin shell structures. A triangular Loop subdivision surface discretisation is used for both geometry and analysis fields. The Kirchhoff-Love shell equation is discretised with the finite element method and the Helmholtz equation for the acoustic field with the boundary element method. The use of the boundary element formulation allows the elegant handling of infinite domains and precludes the need for volumetric meshing. In the present work the subdivision control meshes for the shell displacements and the acoustic pressures have the same resolution. The corresponding smooth subdivision basis functions have the $C^1$ continuity property required for the Kirchhoff-Love formulation and are highly efficient for the acoustic field computations. We validate the proposed isogeometric formulation through a closed-form solution of acoustic scattering over a thin shell sphere. Furthermore, we demonstrate the ability of the proposed approach to handle complex geometries with arbitrary topology that provides an integrated isogeometric design and analysis workflow for coupled structural-acoustic analysis of shells.
An isogeometric Galerkin approach for analysing the free vibrations of piezoelectric shells is presented. The shell kinematics is specialised to infinitesimal deformations and follow the Kirchhoff-Love hypothesis. Both the geometry and physical fields are discretised using Catmull-Clark subdivision bases. It provides the required C1 continuous discretisation for the Kirchhoff-Love theory. The crystalline structure of piezoelectric materials is described using an anisotropic constitutive relation. Hamiltons variational principle is applied to the dynamic analysis to derive the weak form of the governing equations. The coupled eigenvalue problem is formulated by considering the problem of harmonic vibration in the absence of external load. The formulation for the purely elastic case is verified using a spherical thin shell benchmark. Thereafter, the piezoelectric effect and vibration modes of a transverse isotropic curved plate are analysed and evaluated for the Scordelis-Lo roof problem. Finally, the eigenvalue analysis of a CAD model of a piezoelectric speaker shell structure showcases the ability of the proposed method to handle complex geometries.
An isogeometric approach for solving the Laplace-Beltrami equation on a two-dimensional manifold embedded in three-dimensional space using a Galerkin method based on Catmull-Clark subdivision surfaces is presented and assessed. The scalar-valued Laplace-Beltrami equation requires only C0 continuity and is adopted to elucidate key features and properties of the isogeometric method using Catmull-Clark subdivision surfaces. Catmull-Clark subdivision bases are used to discretise both the geometry and the physical field. A fitting method generates control meshes to approximate any given geometry with Catmull-Clark subdivision surfaces. The performance of the Catmull-Clark subdivision method is compared to the conventional finite element method. Subdivision surfaces without extraordinary vertices show the optimal convergence rate. However, extraordinary vertices introduce error, which decreases the convergence rate. A comparative study shows the effect of the number and valences of the extraordinary vertices on accuracy and convergence. An adaptive quadrature scheme is shown to reduce the error.
We investigate the isogeometric analysis for surface PDEs based on the extended Loop subdivision approach. The basis functions consisting of quartic box-splines corresponding to each subdivided control mesh are utilized to represent the geometry exactly, and construct the solution space for dependent variables as well, which is consistent with the concept of isogeometric analysis. The subdivision process is equivalent to the $h$-refinement of NURBS-based isogeometric analysis. The performance of the proposed method is evaluated by solving various surface PDEs, such as surface Laplace-Beltrami harmonic/biharmonic/triharmonic equations, which are defined on different limit surfaces of the extended Loop subdivision for different initial control meshes. Numerical experiments demonstrate that the proposed method has desirable performance in terms of the accuracy, convergence and computational cost for solving the above surface PDEs defined on both open and closed surfaces. The proposed approach is proved to be second-order accuracy in the sense of $L^2$-norm by theoretical and/or numerical results, which is also outperformed over the standard linear finite element by several numerical comparisons.
We analyze a discontinuous Galerkin FEM-BEM scheme for a second order elliptic transmission problem posed in the three-dimensional space. The symmetric variational formulation is discretized by nonconforming Raviart-Thomas finite elements on a general partition of the interior domain coupled with discontinuous boundary elements on an independent quasi-uniform mesh of the transmission interface. We prove (almost) quasi-optimal convergence of the method and confirm the theory by a numerical experiment. In addition, we consider the case when continuous rather than discontinuous boundary elements are used.
In this article, we discuss the numerical solution of diffusion equations on random surfaces within the isogeometric framework. Complex computational geometries, given only by surface triangulations, are recast into the isogeometric context by transforming them into quadrangulations and a subsequent interpolation procedure. Moreover, we describe in detail, how diffusion problems on random surfaces can be modelled and how quantities of interest may be derived. In particular, we propose a low rank approximation algorithm for the high-dimensional space-time correlation of the random solution. Extensive numerical studies are provided to quantify and validate the approach.