Do you want to publish a course? Click here

Room-Temperature Continuous-Wave Frequency-Referenced Spectrometer up to 7.5 THz

61   0   0.0 ( 0 )
 Added by Luigi Consolino
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The lack of coherent room-temperature sources in the whole terahertz spectral window (0.3-10 THz) has significantly hampered the growth of scientific and technological applications in this range. Among them, high-precision frequency measurements of molecular transitions play a central role but remain an open challenge. Here, room-temperature generation and detection of continuous-wave, broadly tunable, narrow-linewidth THz radiation are presented, and their application to high-resolution spectroscopy in the broad 1-7.5 THz spectral range is demonstrated. This result has been achieved by implementing a Cherenkov phase-matching scheme into a channel waveguide in a nonlinear crystal. This simple approach, entirely based on robust telecom technology, unprecedently merges in a single source an ultra-broad continuous-wave spectral coverage and a state-of-the-art accuracy (approximately 10-9) in molecular-transition-center determination.

rate research

Read More

Robust laser sources are a fundamental building block for contemporary information technologies. Originating from condensed-matter physics, the concept of topology has recently entered the realm of optics, offering fundamentally new design principles for lasers with enhanced robustness. In analogy to the well-known Majorana fermions in topological superconductors, Dirac-vortex states have recently been investigated in passive photonic systems and are now considered as a promising candidate for single-mode large-area lasers. Here, we experimentally realize the first Dirac-vortex topological lasers in InAs/InGaAs quantum-dot materials monolithically grown on a silicon substrate. We observe room-temperature continuous-wave single-mode linearly polarized vertical laser emission at a telecom wavelength. Most importantly, we confirm that the wavelength of the Dirac-vortex laser is topologically robust against variations in the cavity size, and its free spectral range defies the universal inverse scaling law with the cavity size. These lasers will play an important role in CMOS-compatible photonic and optoelectronic systems on a chip.
In this paper, a novel method to enhance Frequency Modulated Continuous Wave (FMCW) THz imaging resolution beyond its diffraction limit is proposed. Our method comprises two stages. Firstly, we reconstruct the signal in depth-direction using a sinc-envelope, yielding a significant improvement in depth estimation and signal parameter extraction. The resulting high precision depth estimate is used to deduce an accurate reflection intensity THz image. This image is fed in the second stage of our method to a 2D blind deconvolution procedure, adopted to enhance the lateral THz image resolution beyond the diffraction limit. Experimental data acquired with a FMCW system operating at 577 GHz with a bandwidth of 126 GHz shows that the proposed method enhances the lateral resolution by a factor of 2.29 to 346.2um with respect to the diffraction limit. The depth accuracy is 91um. Interestingly, the lateral resolution enhancement achieved with this blind deconvolution concept leads to better results in comparison to conventional gaussian deconvolution. Experimental data on a PCB resolution target is presented, in order to quantify the resolution enhancement and to compare the performance with established image enhancement approaches. The presented technique allows exposure of the interwoven fibre reinforced embedded structures of the PCB test sample.
Ultrafast nonlinear photonics enables a host of applications in advanced on-chip spectroscopy and information processing. These rely on a strong intensity dependent (nonlinear) refractive index capable of modulating optical pulses on sub-picosecond timescales and on length scales suitable for integrated photonics. Currently there is no platform that can provide this for the UV spectral range where broadband spectra generated by nonlinear modulation can pave the way to new on-chip ultrafast (bio-) chemical spectroscopy devices. We demonstrate the giant nonlinearity of UV hybrid light-matter states (exciton-polaritons) up to room temperature in an AlInGaN waveguide. We experimentally measure ultrafast nonlinear spectral broadening of UV pulses in a compact 100 $mu$m long device and deduce a nonlinearity 1000 times that in common UV nonlinear materials and comparable to non-UV polariton devices. Our demonstration promises to underpin a new generation of integrated UV nonlinear light sources for advanced spectroscopy and measurement.
Frequency upconversion is a cornerstone of electromagnetic signal processing, analysis and detection. It is used to transfer energy and information from one frequency domain to another where transmission, modulation or detection is technically easier or more efficient. Optomechanical transduction is emerging as a flexible approach to coherent frequency upconversion; it has been successfully demonstrated for conversion from radio- and microwaves (kHz to GHz) to optical fields. Nevertheless, optomechanical transduction of multi-THz and mid-infrared signals remains an open challenge. Here, we utilize molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32~THz into the visible domain at ambient conditions. The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser and results in Stokes and anti-Stokes upconverted Raman sidebands with sub-natural linewidth, indicating a coherent process. The nanocavity offers 13 orders of magnitude enhancement of upconversion efficiency per molecule compared to free space, with a measured phonon-to-photon internal conversion efficiency larger than $10^{-4}$ per milliwatt of pump power. Our results establish a flexible paradigm for optomechanical frequency conversion using molecular oscillators coupled to plasmonic nanocavities, whose vibrational and electromagnetic properties can be tailored at will using chemical engineering and nanofabrication.
The counting and control of optical cycles of light has become common with modelocked laser frequency combs. But even with advances in laser technology, modelocked laser combs remain bulk-component devices that are hand-assembled. In contrast, a frequency comb based on the Kerr-nonlinearity in a dielectric microresonator will enable frequency comb functionality in a micro-fabricated and chip-integrated package suitable for use in a wide-range of environments. Such an advance will significantly impact fields ranging from spectroscopy and trace gas sensing, to astronomy, communications, atomic time keeping and photonic data processing. Yet in spite of the remarkable progress shown over the past years, microresonator frequency combs (microcombs) have still been without the key function of direct f-2f self-referencing and phase-coherent frequency control that will be critical for enabling their full potential. Here we realize these missing elements using a low-noise 16.4 GHz silicon chip microcomb that is coherently broadened from its initial 1550 nm wavelength and subsequently f-2f self-referenced and phase-stabilized to an atomic clock. With this advance, we not only realize the highest repetition rate octave-span frequency comb ever achieved, but we highlight the low-noise microcomb properties that support highest atomic clock limited frequency stability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا