No Arabic abstract
Robust laser sources are a fundamental building block for contemporary information technologies. Originating from condensed-matter physics, the concept of topology has recently entered the realm of optics, offering fundamentally new design principles for lasers with enhanced robustness. In analogy to the well-known Majorana fermions in topological superconductors, Dirac-vortex states have recently been investigated in passive photonic systems and are now considered as a promising candidate for single-mode large-area lasers. Here, we experimentally realize the first Dirac-vortex topological lasers in InAs/InGaAs quantum-dot materials monolithically grown on a silicon substrate. We observe room-temperature continuous-wave single-mode linearly polarized vertical laser emission at a telecom wavelength. Most importantly, we confirm that the wavelength of the Dirac-vortex laser is topologically robust against variations in the cavity size, and its free spectral range defies the universal inverse scaling law with the cavity size. These lasers will play an important role in CMOS-compatible photonic and optoelectronic systems on a chip.
Topological insulator lasers (TILs) are a recently introduced family of lasing arrays in which phase locking is achieved through synthetic gauge fields. These single frequency light source arrays operate in the spatially extended edge modes of topologically non-trivial optical lattices. Because of the inherent robustness of topological modes against perturbations and defects, such topological insulator lasers tend to demonstrate higher slope efficiencies as compared to their topologically trivial counterparts. So far, magnetic and non-magnetic optically pumped topological laser arrays as well as electrically pumped TILs that are operating at cryogenic temperatures have been demonstrated. Here we present the first room temperature and electrically pumped topological insulator laser. This laser array, using a structure that mimics the quantum spin Hall effect for photons, generates light at telecom wavelengths and exhibits single frequency emission. Our work is expected to lead to further developments in laser science and technology, while opening up new possibilities in topological photonics.
The lack of coherent room-temperature sources in the whole terahertz spectral window (0.3-10 THz) has significantly hampered the growth of scientific and technological applications in this range. Among them, high-precision frequency measurements of molecular transitions play a central role but remain an open challenge. Here, room-temperature generation and detection of continuous-wave, broadly tunable, narrow-linewidth THz radiation are presented, and their application to high-resolution spectroscopy in the broad 1-7.5 THz spectral range is demonstrated. This result has been achieved by implementing a Cherenkov phase-matching scheme into a channel waveguide in a nonlinear crystal. This simple approach, entirely based on robust telecom technology, unprecedently merges in a single source an ultra-broad continuous-wave spectral coverage and a state-of-the-art accuracy (approximately 10-9) in molecular-transition-center determination.
Chiral anomaly, a non-conservation of chiral charge pumped by the topological nontrivial gauge fields, has been predicted to exist in Weyl semimetals. However, until now, the experimental signature of this effect exclusively relies on the observation of negative longitudinal magnetoresistance at low temperatures. Here, we report the field-modulated chiral charge pumping process and valley diffusion in Cd3As2. Apart from the conventional negative magnetoresistance, we observe an unusual nonlocal response with negative field dependence up to room temperature, originating from the diffusion of valley polarization. Furthermore, a large magneto-optic Kerr effect generated by parallel electric and magnetic fields is detected. These new experimental approaches provide a quantitative analysis of the chiral anomaly phenomenon which is inaccessible previously. The ability to manipulate the valley polarization in topological semimetal at room temperature opens up a brand-new route towards understanding its fundamental properties and utilizing the chiral fermions.
We characterize germanium-vacancy GeVn complexes in silicon using first-principles Density Functional Theory calculations with screening-dependent hybrid functionals. We report on the local geometry and electronic excited states of these defects, including charge transition levels corresponding to the addition of one or more electrons to the defect. Our main theoretical result concerns the GeV complex, which we show to give rise to two excited states deep in the gap, at -0.51 and -0.35 eV from the conduction band, consistently with the available spectroscopic data. The adopted theoretical scheme, suitable to compute a reliable estimate of the wavefunction decay, leads us to predict that such states are associated to an electron localization over a length of about 0.45 nm. By combining the electronic properties of the bare silicon vacancy, carrying deep states in the band gap, with the spatial controllability arising from single Ge ion implantation techniques, the GeVn complex emerges as a suitable ingredient for silicon-based room-temperature single-atom devices.
Whispering gallery modes in a microwire are characterized by a nearly equidistant energy spectrum. In the strong exciton-photon coupling regime, this system represents a bosonic cascade: a ladder of discrete energy levels that sustains stimulated transitions between neighboring steps. In this work, by using femtosecond angle-resolved spectroscopic imaging technique, the ultrafast dynamics of polaritons in a bosonic cascade based on a one-dimensional ZnO whispering gallery microcavity is explicitly visualized. Clear ladder-form build-up process from higher to lower energy branches of the polariton condensates are observed, which are well reproduced by modeling using rate equations. Moreover, the polariton parametric scattering dynamics are distinguished on a timescale of hundreds of femtoseconds. Our understanding of the femtosecond condensation and scattering dynamics paves the way towards ultrafast coherent control of polaritons at room temperature, which will make it promising for high-speed all-optical integrated applications.