No Arabic abstract
We propose a procedure to achieve a complete energy conversion between laser pulses carrying orbital angular momentum (OAM) in a cloud of cold atoms characterized by a double-Lambda atom-light coupling scheme. A pair of resonant spatially dependent control fields prepare atoms in a position-dependent coherent population trapping state, while a pair of much weaker vortex probe beams propagate in the coherently driven atomic medium. Using the adiabatic approximation we derive the propagation equations for the probe beams. We consider a situation where the second control field is absent at the entrance to the atomic cloud and the first control field goes to zero at the end of the atomic medium. In that case the incident vortex probe beam can transfer its OAM to a generated probe beam. We show that the efficiency of such an energy conversion approaches the unity under the adiabatic condition. On the other hand, by using spatially independent profiles of the control fields, the maximum conversion efficiency is only 1/2.
We study the manipulation of slow light with an orbital angular momentum propagating in a cloud of cold atoms. Atoms are affected by four copropagating control laser beams in a double tripod configuration of the atomic energy levels involved, allowing to minimize the losses at the vortex core of the control beams. In such a situation the atomic medium is transparent for a pair of copropagating probe fields, leading to the creation of two-component (spinor) slow light. We study the interaction between the probe fields when two control beams carry optical vortices of opposite helicity. As a result, a transfer of the optical vortex takes place from the control to the probe fields without switching off and on the control beams. This feature is missing in a single tripod scheme where the optical vortex can be transferred from the control to the probe field only during either the storage or retrieval of light.
Atoms trapped in a red detuned retro-reflected Laguerre-Gaussian beam undergo orbital motion within rings whose centers are on the axis of the laser beam. We determine the wave functions, energies and degeneracies of such quantum rotors (QRs), and the microwave transitions between the energy levels are elucidated. We then show how such QR atoms can be used as high-accuracy rotation sensors when the rings are singly-occupied.
We present an optomechanical device designed to allow optical transduction of orbital angular momentum of light. An optically induced twist imparted on the device by light is detected using an integrated cavity optomechanical system based on a nanobeam slot-mode photonic crystal cavity. This device could allow measurement of the orbital angular momentum of light when photons are absorbed by the mechanical element, or detection of the presence of photons when they are scattered into new orbital angular momentum states by a sub-wavelength grating patterned on the device. Such a system allows detection of a $l = 1$ orbital angular momentum field with an average power of $3.9times10^3$ photons modulated at the mechanical resonance frequency of the device and can be extended to higher order orbital angular momentum states.
We have experimentally studied the degradation of mode purity for light beams carrying orbital angular momentum (OAM) propagating through simulated atmospheric turbulence. The turbulence is modeled as a randomly varying phase aberration, which obeys statistics postulated by Kolmogorov turbulence theory. We introduce this simulated turbulence through the use of a phase-only spatial light modulator. Once the turbulence is introduced, the degradation in mode quality results in cross-talk between OAM modes. We study this cross-talk in OAM for eleven modes, showing that turbulence uniformly degrades the purity of all the modes within this range, irrespective of mode number.
Light beam with optical vortices can propagate in free space only with integer orbital angular momentum. Here, we invert this scientific consensus theoretically and experimentally by proposing light beams carrying natural non-integer orbital angular momentum. These peculiar light beams are actually special solutions of wave function, which possess optical vortices with the topological charge l+0.5, where l is an integer. Owing to the interaction of phase and polarization singularity, these vortex beams with fractional topological charge can maintain their amplitude and vortex phase even when they propagate to an infinite distance. This work demonstrates another state of optical vortices in free space, which will fundamentally inject new vigor into optics, and other relate scientific fields.