Do you want to publish a course? Click here

Light beam carrying natural non-integer orbital angular momentum in free space

122   0   0.0 ( 0 )
 Added by Xiaoyu Weng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Light beam with optical vortices can propagate in free space only with integer orbital angular momentum. Here, we invert this scientific consensus theoretically and experimentally by proposing light beams carrying natural non-integer orbital angular momentum. These peculiar light beams are actually special solutions of wave function, which possess optical vortices with the topological charge l+0.5, where l is an integer. Owing to the interaction of phase and polarization singularity, these vortex beams with fractional topological charge can maintain their amplitude and vortex phase even when they propagate to an infinite distance. This work demonstrates another state of optical vortices in free space, which will fundamentally inject new vigor into optics, and other relate scientific fields.



rate research

Read More

We have experimentally studied the degradation of mode purity for light beams carrying orbital angular momentum (OAM) propagating through simulated atmospheric turbulence. The turbulence is modeled as a randomly varying phase aberration, which obeys statistics postulated by Kolmogorov turbulence theory. We introduce this simulated turbulence through the use of a phase-only spatial light modulator. Once the turbulence is introduced, the degradation in mode quality results in cross-talk between OAM modes. We study this cross-talk in OAM for eleven modes, showing that turbulence uniformly degrades the purity of all the modes within this range, irrespective of mode number.
Manipulation of orbital angular momentum (OAM) of light is essential in OAM-based optical systems. Especially, OAM divider, which can convert the incoming OAM mode into one or several new smaller modes in proportion at different spatial paths, is very useful in OAM-based optical networks. However, this useful tool was never reported yet. For the first time, we put forward a passive OAM divider based on coordinate transformation. The device consists of a Cartesian to log-polar coordinate converter and an inverse converter. The first converter converts the OAM light into a rectangular-shaped plane light with a transverse phase gradient. And the second converter converts the plane light into multiple diffracted light. The OAM of zeroth-order diffracted light is the product of the input OAM and the scaling parameter. The residual light is output from other diffracted orders. Furthermore, we extend the scheme to realize equal N-dividing of OAM and arbitrary dividing of OAM. The ability of dividing OAM shows huge potential for OAM-based classical and quantum information processing.
Free-space communication allows one to use spatial mode encoding, which is susceptible to the effects of diffraction and turbulence. Here, we discuss the optimum communication modes of a system while taking such effects into account. We construct a free-space communication system that encodes information onto the plane-wave (PW) modes of light. We study the performance of this system in the presence of atmospheric turbulence, and compare it with previous results for a system employing orbital-angular-momentum (OAM) encoding. We are able to show that the PW basis is the preferred basis set for communication through atmospheric turbulence for a large Fresnel number system. This study has important implications for high-dimensional quantum key distribution systems.
We show how strongly correlated ultracold bosonic atoms loaded in specific orbital angular momentum states of arrays of cylindrically symmetric potentials can realize a variety of spin-1/2 models of quantum magnetism. We consider explicitly the dependence of the effective couplings on the geometry of the system and demonstrate that several models of interest related to a general $XYZ$ Heisenberg model with external field can be obtained. Furthermore, we discuss how the relative strength of the effective couplings can be tuned and which phases can be explored by doing so in realistic setups. Finally, we address questions concerning the experimental read-out and implementation and we argue that the stability of the system can be enhanced by using ring-shaped trapping potentials.
121 - A.Ya. Bekshaev 2008
The transverse beam pattern, usually observed in experiment, is a result of averaging the optical-frequency oscillations of the electromagnetic field distributed over the beam cross section. An analytical criterion is derived that these oscillations are coupled with a sort of rotation around the beam axis. This criterion appears to be in direct relation with the usual definition of the beam orbital angular momentum.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا