No Arabic abstract
We study the manipulation of slow light with an orbital angular momentum propagating in a cloud of cold atoms. Atoms are affected by four copropagating control laser beams in a double tripod configuration of the atomic energy levels involved, allowing to minimize the losses at the vortex core of the control beams. In such a situation the atomic medium is transparent for a pair of copropagating probe fields, leading to the creation of two-component (spinor) slow light. We study the interaction between the probe fields when two control beams carry optical vortices of opposite helicity. As a result, a transfer of the optical vortex takes place from the control to the probe fields without switching off and on the control beams. This feature is missing in a single tripod scheme where the optical vortex can be transferred from the control to the probe field only during either the storage or retrieval of light.
We present an optomechanical device designed to allow optical transduction of orbital angular momentum of light. An optically induced twist imparted on the device by light is detected using an integrated cavity optomechanical system based on a nanobeam slot-mode photonic crystal cavity. This device could allow measurement of the orbital angular momentum of light when photons are absorbed by the mechanical element, or detection of the presence of photons when they are scattered into new orbital angular momentum states by a sub-wavelength grating patterned on the device. Such a system allows detection of a $l = 1$ orbital angular momentum field with an average power of $3.9times10^3$ photons modulated at the mechanical resonance frequency of the device and can be extended to higher order orbital angular momentum states.
We analyze the multipole excitation of atoms with twisted light, i.e., by a vortex light field that carries orbital angular momentum. A single trapped $^{40}$Ca$^+$ ion serves as a localized and positioned probe of the exciting field. We drive the $S_{1/2} to D_{5/2}$ transition and observe the relative strengths of different transitions, depending on the ions transversal position with respect to the center of the vortex light field. On the other hand, transition amplitudes are calculated for a twisted light field in form of a Bessel beam, a Bessel-Gauss and a Gauss-Laguerre mode. Analyzing experimental obtained transition amplitudes we find agreement with the theoretical predictions at a level of better than 3%. Finally, we propose measurement schemes with two-ion crystals to enhance the sensing accuracy of vortex modes in future experiments.
Orbital angular momentum (OAM) of light is an attractive degree of freedom for funda- mentals studies in quantum mechanics. In addition, the discrete unbounded state-space of OAM has been used to enhance classical and quantum communications. Unambiguous mea- surement of OAM is a key part of all such experiments. However, state-of-the-art methods for separating single photons carrying a large number of different OAM values are limited to a theoretical separation efficiency of about 77 percent. Here we demonstrate a method which uses a series of unitary optical transformations to enable the measurement of lights OAM with an experimental separation efficiency of more than 92 percent. Further, we demonstrate the separation of modes in the angular position basis, which is mutually unbiased with respect to the OAM basis. The high degree of certainty achieved by our method makes it particu- larly attractive for enhancing the information capacity of multi-level quantum cryptography systems.
Manipulation of orbital angular momentum (OAM) of light is essential in OAM-based optical systems. Especially, OAM divider, which can convert the incoming OAM mode into one or several new smaller modes in proportion at different spatial paths, is very useful in OAM-based optical networks. However, this useful tool was never reported yet. For the first time, we put forward a passive OAM divider based on coordinate transformation. The device consists of a Cartesian to log-polar coordinate converter and an inverse converter. The first converter converts the OAM light into a rectangular-shaped plane light with a transverse phase gradient. And the second converter converts the plane light into multiple diffracted light. The OAM of zeroth-order diffracted light is the product of the input OAM and the scaling parameter. The residual light is output from other diffracted orders. Furthermore, we extend the scheme to realize equal N-dividing of OAM and arbitrary dividing of OAM. The ability of dividing OAM shows huge potential for OAM-based classical and quantum information processing.
Magnetostatic modes supported by a ferromagnetic sphere have been known as the Walker modes, each of which possesses an orbital angular momentum as well as a spin angular momentum along a static magnetic field. The Walker modes with non-zero orbital angular momenta exhibit topologically non-trivial spin textures, which we call textit{magnetic quasi-vortices}. Photons in optical whispering gallery modes supported by a dielectric sphere possess orbital and spin angular momenta forming textit{optical vortices}. Within a ferromagnetic, as well as dielectric, sphere, two forms of vortices interact in the process of Brillouin light scattering. We argue that in the scattering there is a selection rule that dictates the exchange of orbital angular momenta between the vortices. The selection rule is shown to be responsible for the experimentally observed nonreciprocal Brillouin light scattering.