No Arabic abstract
Quarkonium production in proton-proton collision is interesting in profiling the partons inside the nucleon. Recently, the impact of double parton scatterings (DPSs) was suggested by experimental data of associated quarkonium production (J/psi+Z, J/psi+W, and J/psi+J/psi) at the LHC and Tevatron, in addition to single parton scatterings (SPSs). In this proceedings contribution, we review the extraction of the effective parameter of the DPS through the evaluation of the SPS contributions under quark-hadron duality.
We review the prospects for quarkonium-production studies in proton and nuclear collisions accessible during the upcoming phases of the CERN Large Hadron Collider operation after 2021, including the ultimate high-luminosity phase, with increased luminosities compared to LHC Runs 1 and 2. We address the current experimental and theoretical open issues in the field and the perspectives for future studies in quarkonium-related physics through the exploitation of the huge data samples to be collected in proton-proton, with integrated luminosities reaching up to 3/ab, in proton-nucleus and in nucleus-nucleus collisions, both in the collider and fixed-target modes. Such investigations include, among others, those of: (i) the quarkonia produced in association with other hard particles; (ii) the chi(Q) and eta(Q) down to small transverse momenta; (iii) the constraints brought in by quarkonia on gluon PDFs, nuclear PDFs, TMDs, GPDs and GTMDs, as well as on the low-x parton dynamics; (iv) the gluon Sivers effect in polarised-nucleon collisions; (v) the properties of the quark-gluon plasma produced in ultra-relativistic heavy-ion collisions and of collective partonic effects in general; and (vi) double and triple parton scatterings.
We study the Single-Parton-Scattering (SPS) production of double quarkonia (J/psi+J/psi, J/psi+Upsilon, and Upsilon+Upsilon) in pp and pp(bar) collisions at the LHC and the Tevatron as measured by the CMS, ATLAS, LHCb, and D0 experiments in the Colour-Evaporation Model (CEM), based on the quark-hadron-duality, including Next-to-Leading Order (NLO) QCD corrections up to alpha_s^5. To do so, we also perform the first true NLO --up to alpha_s^4-- study of the p_T-differential cross section for single-quarkonium production. This allows us to fix the non-perturbative CEM parameters at NLO accuracy in the region where quarkonium-pair data are measured. Our results show that the CEM at NLO in general significantly undershoots these experimental data and, in view of the other existing SPS studies, confirm the need for Double Parton Scattering (DPS) to account for the data. Our NLO study of single-quarkonium production at mid and large p_T also confirms the difficulty of the approach to account for the measured p_T spectra; this is reminiscent of the impossibility to fit single-quarkonium data with the sole 3S18 NRQCD contribution from gluon fragmentation. We stress that the discrepancy occurs in a kinematical region where the new features of the improved CEM are not relevant.
Using an effective field theory approach for higher-spin fields, we derive the interactions of colour singlet and electrically neutral particles with a spin higher than unity, concentrating on the spin-3/2, spin-2, spin-5/2 and spin-3 cases. We compute the decay rates and production cross sections in the main channels for spin-3/2 and spin-2 states at both electron-positron and hadron colliders, and identify the most promising novel experimental signatures for discovering such particles at the LHC. The discussion is qualitatively extended to the spin-5/2 and spin-3 cases. Higher-spin particles exhibit a rich phenomenology and have signatures that often resemble the ones of supersymmetric and extra-dimensional theories. To enable further studies of higher-spin particles at collider and beyond, we collect the relevant Feynman rules and other technical details.
Calibration of the absolute energy scale at high-energy photon (gamma-gamma, gamma-electron) colliders is discussed. The luminosity spectrum at photon colliders is broad and has a rather sharp high-energy edge, which can be used, for example, to measure the mass of the Higgs boson in the process gamma-gamma to H or masses of charged scalars by observing the cross-section threshold. In addition to the precise knowledge of the edge energy of the luminosity spectrum, it is even more important to have a way to calibrate the absolute energy scale of the detector. At first sight, Compton scattering itself provides a unique way to determine the beam energies and produce particles of known energies that could be used for detector calibration. The energy scale is given by the electron mass m_e and laser photon energy omega_0. However, this does not work at realistic photon colliders due to large nonlinear effects in Compton scattering at the conversion region (xi^2 sim 0.3). It is argued that the process gamma-electron to eZ_0 provides the best way to calibrate the energy scale of the detector, where the energy scale is given by m_Z.
We summarise the perspectives on heavy-quarkonium production at the LHC, both for proton-proton and heavy-ion runs, as emanating from the round table held at the HLPW 2008 Conference. The main topics are: present experimental and theoretical knowledge, experimental capabilities, open questions, recent theoretical advances and potentialities linked to some new observables.