No Arabic abstract
We study the Single-Parton-Scattering (SPS) production of double quarkonia (J/psi+J/psi, J/psi+Upsilon, and Upsilon+Upsilon) in pp and pp(bar) collisions at the LHC and the Tevatron as measured by the CMS, ATLAS, LHCb, and D0 experiments in the Colour-Evaporation Model (CEM), based on the quark-hadron-duality, including Next-to-Leading Order (NLO) QCD corrections up to alpha_s^5. To do so, we also perform the first true NLO --up to alpha_s^4-- study of the p_T-differential cross section for single-quarkonium production. This allows us to fix the non-perturbative CEM parameters at NLO accuracy in the region where quarkonium-pair data are measured. Our results show that the CEM at NLO in general significantly undershoots these experimental data and, in view of the other existing SPS studies, confirm the need for Double Parton Scattering (DPS) to account for the data. Our NLO study of single-quarkonium production at mid and large p_T also confirms the difficulty of the approach to account for the measured p_T spectra; this is reminiscent of the impossibility to fit single-quarkonium data with the sole 3S18 NRQCD contribution from gluon fragmentation. We stress that the discrepancy occurs in a kinematical region where the new features of the improved CEM are not relevant.
We present a next-to-leading order QCD calculation of inclusive dijet photoproduction in ultraperipheral Pb-Pb collisions at the LHC and show that the results agree very well with various kinematic distributions measured by the ATLAS collaboration. The effect of including these data in nCTEQ or EPPS16 nuclear parton density functions (nPDFs) is then studied using the Bayesian reweighting technique. For an assumed total error of 5% on the final data, its inclusion would lead to a significant reduction of the nPDF uncertainties of up to a factor of two at small values of the parton momentum fraction. As an outlook, we discuss future analyes of diffractive nPDFs, which are so far completely unknown.
Quarkonium production in proton-proton collision is interesting in profiling the partons inside the nucleon. Recently, the impact of double parton scatterings (DPSs) was suggested by experimental data of associated quarkonium production (J/psi+Z, J/psi+W, and J/psi+J/psi) at the LHC and Tevatron, in addition to single parton scatterings (SPSs). In this proceedings contribution, we review the extraction of the effective parameter of the DPS through the evaluation of the SPS contributions under quark-hadron duality.
We summarise the perspectives on heavy-quarkonium production at the LHC, both for proton-proton and heavy-ion runs, as emanating from the round table held at the HLPW 2008 Conference. The main topics are: present experimental and theoretical knowledge, experimental capabilities, open questions, recent theoretical advances and potentialities linked to some new observables.
Precision studies of the production of a high-transverse momentum lepton in association with missing energy at hadron colliders require that electroweak and QCD higher-order contributions are simultaneously taken into account in theoretical predictions and data analysis. Here we present a detailed phenomenological study of the impact of electroweak and strong contributions, as well as of their combination, to all the observables relevant for the various facets of the $psmartpap to {rm lepton} + X$ physics programme at hadron colliders, including luminosity monitoring and Parton Distribution Functions constraint, $W$ precision physics and search for new physics signals. We provide a theoretical recipe to carefully combine electroweak and strong corrections, that are mandatory in view of the challenging experimental accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC, and discuss the uncertainty inherent the combination. We conclude that the theoretical accuracy of our calculation can be conservatively estimated to be about 2% for standard event selections at the Tevatron and the LHC, and about 5% in the very high $W$ transverse mass/lepton transverse momentum tails. We also provide arguments for a more aggressive error estimate (about 1% and 3%, respectively) and conclude that in order to attain a one per cent accuracy: 1) exact mixed ${cal O}(alpha alpha_s)$ corrections should be computed in addition to the already available NNLO QCD contributions and two-loop electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be coherently included into a single event generator.
We perform a Taylor series expansion of Tsallis distribution by assuming the Tsallis parameter $q$ close to 1. The $q$ value shows the deviation of a system from a thermalised Boltzmann distribution. By taking up to first order in $(q-1)$, we derive an analytical result for Tsallis distribution including radial flow. Further, in the present work, we also study the speed of sound ($c_s$) as a function of temperature using the non-extensive Tsallis statistics for different $q$ values and for different mass cut-offs.