Do you want to publish a course? Click here

Donkey and Smuggler Optimization Algorithm: A Collaborative Working Approach to Path Finding

75   0   0.0 ( 0 )
 Added by Tarik A. Rashid
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Swarm Intelligence is a metaheuristic optimization approach that has become very predominant over the last few decades. These algorithms are inspired by animals physical behaviors and their evolutionary perceptions. The simplicity of these algorithms allows researchers to simulate different natural phenomena to solve various real-world problems. This paper suggests a novel algorithm called Donkey and Smuggler Optimization Algorithm (DSO). The DSO is inspired by the searching behavior of donkeys. The algorithm imitates transportation behavior such as searching and selecting routes for movement by donkeys in the actual world. Two modes are established for implementing the search behavior and route-selection in this algorithm. These are the Smuggler and Donkeys. In the Smuggler mode, all the possible paths are discovered and the shortest path is then found. In the Donkeys mode, several donkey behaviors are utilized such as Run, Face & Suicide, and Face & Support. Real world data and applications are used to test the algorithm. The experimental results consisted of two parts, firstly, we used the standard benchmark test functions to evaluate the performance of the algorithm in respect to the most popular and the state of the art algorithms. Secondly, the DSO is adapted and implemented on three real-world applications namely; traveling salesman problem, packet routing, and ambulance routing. The experimental results of DSO on these real-world problems are very promising. The results exhibit that the suggested DSO is appropriate to tackle other unfamiliar search spaces and complex problems.



rate research

Read More

Evolutionary algorithms (EA) have been widely accepted as efficient solvers for complex real world optimization problems, including engineering optimization. However, real world optimization problems often involve uncertain environment including noisy and/or dynamic environments, which pose major challenges to EA-based optimization. The presence of noise interferes with the evaluation and the selection process of EA, and thus adversely affects its performance. In addition, as presence of noise poses challenges to the evaluation of the fitness function, it may need to be estimated instead of being evaluated. Several existing approaches attempt to address this problem, such as introduction of diversity (hyper mutation, random immigrants, special operators) or incorporation of memory of the past (diploidy, case based memory). However, these approaches fail to adequately address the problem. In this paper we propose a Distributed Population Switching Evolutionary Algorithm (DPSEA) method that addresses optimization of functions with noisy fitness using a distributed population switching architecture, to simulate a distributed self-adaptive memory of the solution space. Local regression is used in the pseudo-populations to estimate the fitness. Successful applications to benchmark test problems ascertain the proposed methods superior performance in terms of both robustness and accuracy.
Whale Optimization Algorithm (WOA) is a nature-inspired meta-heuristic optimization algorithm, which was proposed by Mirjalili and Lewis in 2016. This algorithm has shown its ability to solve many problems. Comprehensive surveys have been conducted about some other nature-inspired algorithms, such as ABC, PSO, etc.Nonetheless, no survey search work has been conducted on WOA. Therefore, in this paper, a systematic and meta analysis survey of WOA is conducted to help researchers to use it in different areas or hybridize it with other common algorithms. Thus, WOA is presented in depth in terms of algorithmic backgrounds, its characteristics, limitations, modifications, hybridizations, and applications. Next, WOA performances are presented to solve different problems. Then, the statistical results of WOA modifications and hybridizations are established and compared with the most common optimization algorithms and WOA. The surveys results indicate that WOA performs better than other common algorithms in terms of convergence speed and balancing between exploration and exploitation. WOA modifications and hybridizations also perform well compared to WOA. In addition, our investigation paves a way to present a new technique by hybridizing both WOA and BAT algorithms. The BAT algorithm is used for the exploration phase, whereas the WOA algorithm is used for the exploitation phase. Finally, statistical results obtained from WOA-BAT are very competitive and better than WOA in 16 benchmarks functions. WOA-BAT also outperforms well in 13 functions from CEC2005 and 7 functions from CEC2019.
There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using co-operating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem
115 - Shengcai Liu , Ke Tang , Xin Yao 2017
This paper studies improving solvers based on their past solving experiences, and focuses on improving solvers by offline training. Specifically, the key issues of offline training methods are discussed, and research belonging to this category but from different areas are reviewed in a unified framework. Existing training methods generally adopt a two-stage strategy in which selecting the training instances and training instances are treated in two independent phases. This paper proposes a new training method, dubbed LiangYi, which addresses these two issues simultaneously. LiangYi includes a training module for a population-based solver and an instance sampling module for updating the training instances. The idea behind LiangYi is to promote the population-based solver by training it (with the training module) to improve its performance on those instances (discovered by the sampling module) on which it performs badly, while keeping the good performances obtained by it on previous instances. An instantiation of LiangYi on the Travelling Salesman Problem is also proposed. Empirical results on a huge testing set containing 10000 instances showed LiangYi could train solvers that perform significantly better than the solvers trained by other state-of-the-art training method. Moreover, empirical investigation of the behaviours of LiangYi confirmed it was able to continuously improve the solver through training.
The surrogate-assisted optimization algorithm is a promising approach for solving expensive multi-objective optimization problems. However, most existing surrogate-assisted multi-objective optimization algorithms have three main drawbacks: 1) cannot scale well for solving problems with high dimensional decision space, 2) cannot incorporate available gradient information, and 3) do not support batch optimization. These drawbacks prevent their use for solving many real-world large scale optimization problems. This paper proposes a batched scalable multi-objective Bayesian optimization algorithm to tackle these issues. The proposed algorithm uses the Bayesian neural network as the scalable surrogate model. Powered with Monte Carlo dropout and Sobolov training, the model can be easily trained and can incorporate available gradient information. We also propose a novel batch hypervolume upper confidence bound acquisition function to support batch optimization. Experimental results on various benchmark problems and a real-world application demonstrate the efficiency of the proposed algorithm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا