Do you want to publish a course? Click here

Uncertainty And Evolutionary Optimization: A Novel Approach

126   0   0.0 ( 0 )
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Evolutionary algorithms (EA) have been widely accepted as efficient solvers for complex real world optimization problems, including engineering optimization. However, real world optimization problems often involve uncertain environment including noisy and/or dynamic environments, which pose major challenges to EA-based optimization. The presence of noise interferes with the evaluation and the selection process of EA, and thus adversely affects its performance. In addition, as presence of noise poses challenges to the evaluation of the fitness function, it may need to be estimated instead of being evaluated. Several existing approaches attempt to address this problem, such as introduction of diversity (hyper mutation, random immigrants, special operators) or incorporation of memory of the past (diploidy, case based memory). However, these approaches fail to adequately address the problem. In this paper we propose a Distributed Population Switching Evolutionary Algorithm (DPSEA) method that addresses optimization of functions with noisy fitness using a distributed population switching architecture, to simulate a distributed self-adaptive memory of the solution space. Local regression is used in the pseudo-populations to estimate the fitness. Successful applications to benchmark test problems ascertain the proposed methods superior performance in terms of both robustness and accuracy.



rate research

Read More

The present work provides a new approach to evolve ligand structures which represent possible drug to be docked to the active site of the target protein. The structure is represented as a tree where each non-empty node represents a functional group. It is assumed that the active site configuration of the target protein is known with position of the essential residues. In this paper the interaction energy of the ligands with the protein target is minimized. Moreover, the size of the tree is difficult to obtain and it will be different for different active sites. To overcome the difficulty, a variable tree size configuration is used for designing ligands. The optimization is done using a novel Neighbourhood Based Genetic Algorithm (NBGA) which uses dynamic neighbourhood topology. To get variable tree size, a variable-length version of the above algorithm is devised. To judge the merit of the algorithm, it is initially applied on the well known Travelling Salesman Problem (TSP).
Traditional optimization algorithms search for a single global optimum that maximizes (or minimizes) the objective function. Multimodal optimization algorithms search for the highest peaks in the search space that can be more than one. Quality-Diversity algorithms are a recent addition to the evolutionary computation toolbox that do not only search for a single set of local optima, but instead try to illuminate the search space. In effect, they provide a holistic view of how high-performing solutions are distributed throughout a search space. The main differences with multimodal optimization algorithms are that (1) Quality-Diversity typically works in the behavioral space (or feature space), and not in the genotypic (or parameter) space, and (2) Quality-Diversity attempts to fill the whole behavior space, even if the niche is not a peak in the fitness landscape. In this chapter, we provide a gentle introduction to Quality-Diversity optimization, discuss the main representative algorithms, and the main current topics under consideration in the community. Throughout the chapter, we also discuss several successful applications of Quality-Diversity algorithms, including deep learning, robotics, and reinforcement learning.
In this work we consider multitasking in the context of solving multiple optimization problems simultaneously by conducting a single search process. The principal goal when dealing with this scenario is to dynamically exploit the existing complementarities among the problems (tasks) being optimized, helping each other through the exchange of valuable knowledge. Additionally, the emerging paradigm of Evolutionary Multitasking tackles multitask optimization scenarios by using as inspiration concepts drawn from Evolutionary Computation. The main purpose of this survey is to collect, organize and critically examine the abundant literature published so far in Evolutionary Multitasking, with an emphasis on the methodological patterns followed when designing new algorithmic proposals in this area (namely, multifactorial optimization and multipopulation-based multitasking). We complement our critical analysis with an identification of challenges that remain open to date, along with promising research directions that can stimulate future efforts in this topic. Our discussions held throughout this manuscript are offered to the audience as a reference of the general trajectory followed by the community working in this field in recent times, as well as a self-contained entry point for newcomers and researchers interested to join this exciting research avenue.
We introduce a novel evolutionary formulation of the problem of finding a maximum independent set of a graph. The new formulation is based on the relationship that exists between a graphs independence number and its acyclic orientations. It views such orientations as individuals and evolves them with the aid of evolutionary operators that are very heavily based on the structure of the graph and its acyclic orientations. The resulting heuristic has been tested on some of the Second DIMACS Implementation Challenge benchmark graphs, and has been found to be competitive when compared to several of the other heuristics that have also been tested on those graphs.
Not all generate-and-test search algorithms are created equal. Bayesian Optimization (BO) invests a lot of computation time to generate the candidate solution that best balances the predicted value and the uncertainty given all previous data, taking increasingly more time as the number of evaluations performed grows. Evolutionary Algorithms (EA) on the other hand rely on search heuristics that typically do not depend on all previous data and can be done in constant time. Both the BO and EA community typically assess their performance as a function of the number of evaluations. However, this is unfair once we start to compare the efficiency of these classes of algorithms, as the overhead times to generate candidate solutions are significantly different. We suggest to measure the efficiency of generate-and-test search algorithms as the expected gain in the objective value per unit of computation time spent. We observe that the preference of an algorithm to be used can change after a number of function evaluations. We therefore propose a new algorithm, a combination of Bayesian optimization and an Evolutionary Algorithm, BEA for short, that starts with BO, then transfers knowledge to an EA, and subsequently runs the EA. We compare the BEA with BO and the EA. The results show that BEA outperforms both BO and the EA in terms of time efficiency, and ultimately leads to better performance on well-known benchmark objective functions with many local optima. Moreover, we test the three algorithms on nine test cases of robot learning problems and here again we find that BEA outperforms the other algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا