No Arabic abstract
Whale Optimization Algorithm (WOA) is a nature-inspired meta-heuristic optimization algorithm, which was proposed by Mirjalili and Lewis in 2016. This algorithm has shown its ability to solve many problems. Comprehensive surveys have been conducted about some other nature-inspired algorithms, such as ABC, PSO, etc.Nonetheless, no survey search work has been conducted on WOA. Therefore, in this paper, a systematic and meta analysis survey of WOA is conducted to help researchers to use it in different areas or hybridize it with other common algorithms. Thus, WOA is presented in depth in terms of algorithmic backgrounds, its characteristics, limitations, modifications, hybridizations, and applications. Next, WOA performances are presented to solve different problems. Then, the statistical results of WOA modifications and hybridizations are established and compared with the most common optimization algorithms and WOA. The surveys results indicate that WOA performs better than other common algorithms in terms of convergence speed and balancing between exploration and exploitation. WOA modifications and hybridizations also perform well compared to WOA. In addition, our investigation paves a way to present a new technique by hybridizing both WOA and BAT algorithms. The BAT algorithm is used for the exploration phase, whereas the WOA algorithm is used for the exploitation phase. Finally, statistical results obtained from WOA-BAT are very competitive and better than WOA in 16 benchmarks functions. WOA-BAT also outperforms well in 13 functions from CEC2005 and 7 functions from CEC2019.
Increasing nature-inspired metaheuristic algorithms are applied to solving the real-world optimization problems, as they have some advantages over the classical methods of numerical optimization. This paper has proposed a new nature-inspired metaheuristic called Whale Swarm Algorithm for function optimization, which is inspired by the whales behavior of communicating with each other via ultrasound for hunting. The proposed Whale Swarm Algorithm has been compared with several popular metaheuristic algorithms on comprehensive performance metrics. According to the experimental results, Whale Swarm Algorithm has a quite competitive performance when compared with other algorithms.
Most real-world optimization problems often come with multiple global optima or local optima. Therefore, increasing niching metaheuristic algorithms, which devote to finding multiple optima in a single run, are developed to solve these multimodal optimization problems. However, there are two difficulties urgently to be solved for most existing niching metaheuristic algorithms: how to set the optimal values of niching parameters for different optimization problems, and how to jump out of the local optima efficiently. These two difficulties limited their practicality largely. Based on Whale Swarm Algorithm (WSA) we proposed previously, this paper presents a new multimodal optimizer named WSA with Iterative Counter (WSA-IC) to address these two difficulties. In the one hand, WSA-IC improves the iteration rule of the original WSA for multimodal optimization, which removes the need of specifying different values of attenuation coefficient for different problems to form multiple subpopulations, without introducing any niching parameter. In the other hand, WSA-IC enables the identification of extreme point during iterations relying on two new parameters (i.e., stability threshold Ts and fitness threshold Tf), to jump out of the located extreme point. Moreover, the convergence of WSA-IC is proved. Finally, the proposed WSA-IC is compared with several niching metaheuristic algorithms on CEC2015 niching benchmark test functions and five additional classical multimodal functions with high dimensions. The experimental results demonstrate that WSA-IC statistically outperforms other niching metaheuristic algorithms on most test functions.
Estimation of Distribution Algorithms have been proposed as a new paradigm for evolutionary optimization. This paper focuses on the parallelization of Estimation of Distribution Algorithms. More specifically, the paper discusses how to predict performance of parallel Mixed Bayesian Optimization Algorithm (MBOA) that is based on parallel construction of Bayesian networks with decision trees. We determine the time complexity of parallel Mixed Bayesian Optimization Algorithm and compare this complexity with experimental results obtained by solving the spin glass optimization problem. The empirical results fit well the theoretical time complexity, so the scalability and efficiency of parallel Mixed Bayesian Optimization Algorithm for unknown instances of spin glass benchmarks can be predicted. Furthermore, we derive the guidelines that can be used to design effective parallel Estimation of Distribution Algorithms with the speedup proportional to the number of variables in the problem.
Due to the fast-growing volume of text documents and reviews in recent years, current analyzing techniques are not competent enough to meet the users needs. Using feature selection techniques not only support to understand data better but also lead to higher speed and also accuracy. In this article, the Whale Optimization algorithm is considered and applied to the search for the optimum subset of features. As known, F-measure is a metric based on precision and recall that is very popular in comparing classifiers. For the evaluation and comparison of the experimental results, PART, random tree, random forest, and RBF network classification algorithms have been applied to the different number of features. Experimental results show that the random forest has the best accuracy on 500 features. Keywords: Feature selection, Whale Optimization algorithm, Selecting optimal, Classification algorithm
The surrogate-assisted optimization algorithm is a promising approach for solving expensive multi-objective optimization problems. However, most existing surrogate-assisted multi-objective optimization algorithms have three main drawbacks: 1) cannot scale well for solving problems with high dimensional decision space, 2) cannot incorporate available gradient information, and 3) do not support batch optimization. These drawbacks prevent their use for solving many real-world large scale optimization problems. This paper proposes a batched scalable multi-objective Bayesian optimization algorithm to tackle these issues. The proposed algorithm uses the Bayesian neural network as the scalable surrogate model. Powered with Monte Carlo dropout and Sobolov training, the model can be easily trained and can incorporate available gradient information. We also propose a novel batch hypervolume upper confidence bound acquisition function to support batch optimization. Experimental results on various benchmark problems and a real-world application demonstrate the efficiency of the proposed algorithm.