No Arabic abstract
Optically-pumped color centers in semiconductor powders can potentially induce high levels of nuclear spin polarization in surrounding solids or fluids at or near ambient conditions, but complications stemming from the random orientation of the particles and the presence of unpolarized paramagnetic defects hinder the flow of polarization beyond the defects host material. Here, we theoretically study the spin dynamics of interacting nitrogen-vacancy (NV) and substitutional nitrogen (P1) centers in diamond to show that outside protons spin-polarize efficiently upon a magnetic field sweep across the NV-P1 level anti-crossing. The process can be interpreted in terms of an NV-P1 spin ratchet, whose handedness - and hence the sign of the resulting nuclear polarization - depends on the relative timing of the optical excitation pulse. Further, we find that the polarization transfer mechanism is robust to NV misalignment relative to the external magnetic field, and efficient over a broad range of electron-electron and electron-nuclear spin couplings, even if proxy spins feature short coherence or spin-lattice relaxation times. Therefore, these results pave the route towards the dynamic nuclear polarization of arbitrary spin targets brought in proximity with a diamond powder under ambient conditions.
Color-center-hosting semiconductors are emerging as promising source materials for low-field dynamic nuclear polarization (DNP) at or near room temperature, but hyperfine broadening, susceptibility to magnetic field heterogeneity, and nuclear spin relaxation induced by other paramagnetic defects set practical constraints difficult to circumvent. Here, we explore an alternate route to color-center-assisted DNP using nitrogen-vacancy (NV) centers in diamond coupled to substitutional nitrogen impurities, the so-called P1 centers. Working near the level anti-crossing condition - where the P1 Zeeman splitting matches one of the NV spin transitions - we demonstrate efficient microwave-free 13C DNP through the use of consecutive magnetic field sweeps and continuous optical excitation. The amplitude and sign of the polarization can be controlled by adjusting the low-to-high and high-to-low magnetic field sweep rates in each cycle so that one is much faster than the other. By comparing the 13C DNP response for different crystal orientations, we show that the process is robust to magnetic field/NV misalignment, a feature that makes the present technique suitable to diamond powders and settings where the field is heterogeneous. Applications to shallow NVs could capitalize on the greater physical proximity between surface paramagnetic defects and outer nuclei to efficiently polarize target samples in contact with the diamond crystal.
We propose a protocol that achieves arbitrary N-qubit interactions between nuclear spins and that can measure directly nuclear many-body correlators by appropriately making the nuclear spins interact with a nitrogen vacancy (NV) center electron spin. The method takes advantage of recently introduced dynamical decoupling techniques and demonstrates that action on the electron spin is sufficient to fully exploit nuclear spins as robust quantum registers. Our protocol is general, being applicable to other nuclear spin based platforms with electronic spin defects acting as mediators as the case of silicon carbide.
Dynamic Nuclear Polarization (DNP) has enabled enormous gains in magnetic resonance signals and led to vastly accelerated NMR/MRI imaging and spectroscopy. Unlike conventional cw-techniques, DNP methods that exploit the full electron spectrum are appealing since they allow direct participation of all electrons in the hyperpolarization process. Such methods typically entail sweeps of microwave radiation over the broad electron linewidth to excite DNP, but are often inefficient because the sweeps, constrained by adiabaticity requirements, are slow. In this paper we develop a technique to overcome the DNP bottlenecks set by the slow sweeps, employing a swept microwave frequency comb that increases the effective number of polarization transfer events while respecting adiabaticity constraints. This allows a multiplicative gain in DNP enhancement, scaling with the number of comb frequencies and limited only by the hyperfine-mediated electron linewidth. We demonstrate the technique for the optical hyperpolarization of 13C nuclei in powdered microdiamonds at low fields, increasing the DNP enhancement from 30 to 100 measured with respect to the thermal signal at 7T. For low concentrations of broad linewidth electron radicals, e.g. TEMPO, these multiplicative gains could exceed an order of magnitude.
We develop a polarization characterization platform for optical devices in free-space quantum communications. We demonstrate an imaging polarimeter, which analyzes both incident polarization states and the angle of incidence, attached to a six-axis collaborative robot arm, enabling polarization characterization at any position and direction with consistent precision. We present a detailed description of each subsystem including the calibration and polarization-test procedure, and analyze polarization-measurement errors caused by imperfect orientations of the robot arm using a Mueller-matrix model of polarimeters at tilt incidence. We perform a proof-of-principle experiment for an angle-dependent polarization test for a commercial silver-coated mirror for which the polarization states of the reflected light can be accurately calculated. Quantitative agreement between the theory and experiment validates our methodology. We demonstrate the polarization test for a 20.3 cm lens designed for a quantum optical transmitter in Canadas Quantum Encryption and Science Satellite (QEYSSat) mission.
We polarize nuclear spins in a GaAs double quantum dot by controlling two-electron spin states near the anti-crossing of the singlet (S) and m_S=+1 triplet (T+) using pulsed gates. An initialized S state is cyclically brought into resonance with the T+ state, where hyperfine fields drive rapid rotations between S and T+, flipping an electron spin and flopping a nuclear spin. The resulting Overhauser field approaches 80 mT, in agreement with a simple rate-equation model. A self-limiting pulse sequence is developed that allows the steady-state nuclear polarization to be set using a gate voltage.