Do you want to publish a course? Click here

Arbitrary Nuclear Spin Gates in Diamond Mediated by a NV-center Electron Spin

87   0   0.0 ( 0 )
 Added by Jorge Casanova
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a protocol that achieves arbitrary N-qubit interactions between nuclear spins and that can measure directly nuclear many-body correlators by appropriately making the nuclear spins interact with a nitrogen vacancy (NV) center electron spin. The method takes advantage of recently introduced dynamical decoupling techniques and demonstrates that action on the electron spin is sufficient to fully exploit nuclear spins as robust quantum registers. Our protocol is general, being applicable to other nuclear spin based platforms with electronic spin defects acting as mediators as the case of silicon carbide.

rate research

Read More

A rotation sensor is one of the key elements of inertial navigation systems and compliments most cellphone sensor sets used for various applications. Currently, inexpensive and efficient solutions are mechanoelectronic devices, which nevertheless lack long-term stability. Realization of rotation sensors based on spins of fundamental particles may become a drift-free alternative to such devices. Here, we carry out a proof-of-concept experiment, demonstrating rotation measurements on a rotating setup utilizing nuclear spins of an ensemble of NV centers as a sensing element with no stationary reference. The measurement is verified by a commercially available MEMS gyroscope.
The Nitrogen-Vacancy (NV) center in diamond has attractive properties for a number of quantum technologies that rely on the spin angular momentum of the electron and the nuclei adjacent to the center. The nucleus with the strongest interaction is the $^{13}$C nuclear spin of the first shell. Using this degree of freedom effectively hinges on precise data on the hyperfine interaction between the electronic and the nuclear spin. Here, we present detailed experimental data on this interaction, together with an analysis that yields all parameters of the hyperfine tensor, as well as its orientation with respect to the atomic structure of the center.
We experimentally investigate the protection of electron spin coherence of nitrogen vacancy (NV) center in diamond by dynamical nuclear polarization. The electron spin decoherence of an NV center is caused by the magnetic ield fluctuation of the $^{13}$C nuclear spin bath, which contributes large thermal fluctuation to the center electron spin when it is in equilibrium state at room temperature. To address this issue, we continuously transfer the angular momentum from electron spin to nuclear spins, and pump the nuclear spin bath to a polarized state under Hartman-Hahn condition. The bath polarization effect is verified by the observation of prolongation of the electron spin coherence time ($T_2^*$). Optimal conditions for the dynamical nuclear polarization (DNP) process, including the pumping pulse duration and depolarization effect of laser pulses, are studied. Our experimental results provide strong support for quantum information processing and quantum simulation using polarized nuclear spin bath in solid state systems.
Initializing a set of qubits to a given quantum state is a basic prerequisite for the physical implementation of quantum-information protocols. Here, we discuss the polarization of the electronic and nuclear spin in a single nitrogen vacancy center in diamond. Our initialization scheme uses a sequence of laser, microwave and radio-frequency pulses, and we optimize the pumping parameters of the laser pulse. A rate equation model is formulated that explains the effect of the laser pulse on the spin system. We have experimentally determined the population of the relevant spin states as a function of the duration of the laser pulse by measuring Rabi oscillations and Ramsey-type free-induction decays. The experimental data have been analyzed to determine the pumping rates of the rate equation model.
Dynamical decoupling is a powerful technique for extending the coherence time (T$_2$) of qubits. We apply this technique to the electron spin qubit of a single nitrogen-vacancy center in type IIa diamond. In a crystal with natural abundance of $^{13}$C nuclear spins, we extend the decoherence time up to 2.2 ms. This is close to the T$_1$ value of this NV center (4 ms). Since dynamical decoupling must perform well for arbitrary initial conditions, we measured the dependence on the initial state and compared the performance of different sequences with respect to initial state dependence and robustness to experimental imperfections.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا