Do you want to publish a course? Click here

Fermions and bosons in nonsymmorphic PdSb2 with sixfold degeneracy

128   0   0.0 ( 0 )
 Added by Ramakanta Chapai
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

PdSb2 is a candidate for hosting 6-fold-degenerate exotic fermions (beyond Dirac and Weyl fermions).The nontrivial band crossing protected by the nonsymmorphic symmetry plays a crucial role in physical properties. We have grown high-quality single crystals of PdSb2 and characterized their physical properties under several stimuli (temperature, magnetic field, and pressure). While it is a diamagnetic Fermi-liquid metal under ambient pressure, PdSb2 exhibits a large magnetoresistance with continuous increase up to 14 T, which follows the Kohlers scaling law at all temperatures. This implies one-band electrical transport, although multiple bands are predicted by first principles calculations. By applying magnetic field along the [111] direction, de Haas-van Alphen oscillations are observed with frequency of 102 T. The effective mass is nearly zero (0.045m0) with the Berry phase close to {pi}, confirming that the band close to the R point has a nontrivial character. Under quasihydrostatic pressure (p), evidence for superconductivity is observed in the resistivity below the critical temperature Tc. The dome-shaped Tc versus p is obtained with maximum Tc~2.9 K. We argue that the formation of Cooper pairs (bosons) is the consequence of the redistribution of the 6-fold-degenerate fermions under pressure.



rate research

Read More

We study the momentum space entanglement spectra of bosonic and fermionic formulations of the spin-1/2 XXZ chain with analytical methods and exact diagonalization. We investigate the behavior of the entanglement gaps, present in both partitions, across quantum phase transitions in the XXZ chain. In both cases, finite size scaling reveals that the entanglement gap closure does not occur at the physical transition points. For bosons, we find that the entanglement gap observed in [Thomale et al., Phys. Rev. Lett. 105, 116805 (2010)] depends on the scaling dimension of the conformal field theory as varied by the XXZ anisotropy. For fermions, the infinite entanglement gap present at the XX point persists well past the phase transition at the Heisenberg point. We elaborate on how these shifted transition points in the entanglement spectra may in fact support the numerical study of physical transitions in the momentum space density matrix renormalization group.
Three types of fermions have been extensively studied in topological quantum materials: Dirac, Weyl, and Majorana fermions. Beyond the fundamental fermions in high energy physics, exotic fermions are allowed in condensed matter systems residing in three-, six- or eightfold degenerate band crossings. Here, we use angle-resolved photoemission spectroscopy to directly visualize three-doubly-degenerate bands in PdSb$_2$. The ultrahigh energy resolution we are able to achieve allows for the confirmation of all the sixfold degenerate bands at the R point, in remarkable consistency with first-principles calculations. Moreover, we find that this sixfold degenerate crossing has quadratic dispersion as predicted by theory. Finally, we compare sixfold degenerate fermions with previously confirmed fermions to demonstrate the importance of this work: our study indicates a topological fermion beyond the constraints of high energy physics.
Recent developments in the relationship between bulk topology and surface crystal symmetry have led to the discovery of materials whose gapless surface states are protected by crystal symmetries. In fact, there exists only a very limited set of possible surface crystal symmetries, captured by the 17 wallpaper groups. We show that a consideration of symmetry-allowed band degeneracies in the wallpaper groups can be used to understand previous topological crystalline insulators, as well as to predict new examples. In particular, the two wallpaper groups with multiple glide lines, $pgg$ and $p4g$, allow for a new topological insulating phase, whose surface spectrum consists of only a single, fourfold-degenerate, true Dirac fermion. Like the surface state of a conventional topological insulator, the surface Dirac fermion in this nonsymmorphic Dirac insulator provides a theoretical exception to a fermion doubling theorem. Unlike the surface state of a conventional topological insulator, it can be gapped into topologically distinct surface regions while keeping time-reversal symmetry, allowing for networks of topological surface quantum spin Hall domain walls. We report the theoretical discovery of new topological crystalline phases in the A$_2$B$_3$ family of materials in SG 127, finding that Sr$_2$Pb$_3$ hosts this new topological surface Dirac fermion. Furthermore, (100)-strained Au$_2$Y$_3$ and Hg$_2$Sr$_3$ host related topological surface hourglass fermions. We also report the presence of this new topological hourglass phase in Ba$_5$In$_2$Sb$_6$ in SG 55. For orthorhombic space groups with two glides, we catalog all possible bulk topological phases by a consideration of the allowed non-abelian Wilson loop connectivities, and we develop topological invariants for these systems. Finally, we show how in a particular limit, these crystalline phases reduce to copies of the SSH model.
There is considerable current interest to explore electronic topology in strongly correlated metals, with heavy fermion systems providing a promising setting. Recently, a Weyl-Kondo semimetal phase has been concurrently discovered in theoretical and experimental studies. The theoretical work was carried out in a Kondo lattice model that is time-reversal invariant but inversion-symmetry breaking. In this paper, we show in some detail how nonsymmorphic space-group symmetry and strong correlations cooperate to form Weyl nodal excitations with highly reduced velocity and pin the resulting Weyl nodes to the Fermi energy. A tilted variation of the Weyl-Kondo solution is further analyzed here, following the recent consideration of such effect in the context of understanding a large spontaneous Hall effect in Ce$_3$Bi$_4$Pd$_3$ (Dzsaber et al., arXiv:1811.02819). We discuss the implications of our results for the enrichment of the global phase diagram of heavy fermion metals, and for the space-group symmetry enforcement of topological semimetals in other strongly correlated settings.
The exact solutions of a one-dimensional mixture of spinor bosons and spinor fermions with $delta$-function interactions are studied. Some new sets of Bethe ansatz equations are obtained by using the graded nest quantum inverse scattering method. Many interesting features appear in the system. For example, the wave function has the $SU(2|2)$ supersymmetry. It is also found that the ground state of the system is partial polarized, where the fermions form a spin singlet state and the bosons are totally polarized. From the solution of Bethe ansatz equations, it is shown that all the momentum, spin and isospin rapidities at the ground state are real if the interactions between the particles are repulsive; while the fermions form two-particle bounded states and the bosons form one large bound state, which means the bosons condensed at the zero momentum point, if the interactions are attractive. The charge, spin and isospin excitations are discussed in detail. The thermodynamic Bethe ansatz equations are also derived and their solutions at some special cases are obtained analytically.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا