Do you want to publish a course? Click here

Exact solutions of a one-dimensional mixture of spinor bosons and spinor fermions

123   0   0.0 ( 0 )
 Added by Shi-Jian Gu
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The exact solutions of a one-dimensional mixture of spinor bosons and spinor fermions with $delta$-function interactions are studied. Some new sets of Bethe ansatz equations are obtained by using the graded nest quantum inverse scattering method. Many interesting features appear in the system. For example, the wave function has the $SU(2|2)$ supersymmetry. It is also found that the ground state of the system is partial polarized, where the fermions form a spin singlet state and the bosons are totally polarized. From the solution of Bethe ansatz equations, it is shown that all the momentum, spin and isospin rapidities at the ground state are real if the interactions between the particles are repulsive; while the fermions form two-particle bounded states and the bosons form one large bound state, which means the bosons condensed at the zero momentum point, if the interactions are attractive. The charge, spin and isospin excitations are discussed in detail. The thermodynamic Bethe ansatz equations are also derived and their solutions at some special cases are obtained analytically.



rate research

Read More

119 - S. Modak , S.-W. Tsai , 2011
We study a mixture of ultracold spin-half fermionic and spin-one bosonic atoms in a shallow optical lattice where the bosons are coupled to the fermions via both density-density and spin-spin interactions. We consider the parameter regime where the bosons are in a superfluid ground state, integrate them out, and obtain an effective action for the fermions. We carry out a renormalization group analysis of this effective fermionic action at low temperatures, show that the presence of the spinor bosons may lead to a separation of Fermi surfaces of the spin-up and spin-down fermions, and investigate the parameter range where this phenomenon occurs. We also calculate the susceptibilities corresponding to the possible superfluid instabilities of the fermions and obtain their possible broken-symmetry ground states at low temperatures and weak interactions.
We investigate a quantum many-body lattice system of one-dimensional spinless fermions interacting with a dynamical $Z_2$ gauge field. The gauge field mediates long-range attraction between fermions resulting in their confinement into bosonic dimers. At strong coupling we develop an exactly solvable effective theory of such dimers with emergent constraints. Even at generic coupling and fermion density, the model can be rewritten as a local spin chain. Using the Density Matrix Renormalization Group the system is shown to form a Luttinger liquid, indicating the emergence of fractionalized excitations despite the confinement of lattice fermions. In a finite chain we observe the doubling of the period of Friedel oscillations which paves the way towards experimental detection of confinement in this system. We discuss the possibility of a Mott phase at the commensurate filling $2/3$.
Dynamical fermionization refers to the phenomenon in Tonks-Girardeau (TG) gases where, upon release from harmonic confinement, the gass momentum density profile evolves asymptotically to that of an ideal Fermi gas in the initial trap. This phenomenon has been demonstrated theoretically in hardcore and anyonic TG gases, and recently experimentally observed in a strongly interacting Bose gas. We extend this study to a one dimensional (1D) spinor gas of arbitrary spin in the strongly interacting regime, and analytically prove that the total momentum distribution after the harmonic trap is turned off approaches that of a spinless ideal Fermi gas, while the asymptotic momentum distribution of each spin component takes the same shape of the initial real space density profile of that spin component. Our work demonstrates the rich physics arising from the interplay between the spin and the charge degrees of freedom in a spinor system.
111 - A. Kamenev , L.I. Glazman 2009
The ground state of a spinor Bose liquid is ferromagnetic, while the softest excitation above the ground state is the magnon mode. The dispersion relation of the magnon in a one-dimensional liquid is periodic in the wavenumber q with the period 2pi n, determined by the density n of the liquid. Dynamic correlation functions, such as e.g. spin-spin correlation function, exhibit power-law singularities at the magnon spectrum, $omegatoomega_m(q,n)$. Without using any specific model of the inter-particle interactions, we relate the corresponding exponents to independently measurable quantities $partialomega_m/partial q$ and $partialomega_m/partial n$.
We consider two species of hard-core bosons with density dependent hopping in a one-dimensional optical lattice, for which we propose experimental realizations using time-periodic driving. The quantum phase diagram for half-integer filling is determined by combining different advanced numerical simulations with analytic calculations. We find that a reduction of the density-dependent hopping induces a Mott-insulator to superfluid transition. For negative hopping a previously unknown state is found, where one species induces a gauge phase of the other species, which leads to a superfluid phase of gauge-paired particles. The corresponding experimental signatures are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا