Do you want to publish a course? Click here

Tunable cloaking of Mexican-hat confined states in bilayer silicene

93   0   0.0 ( 0 )
 Added by Lan Tran
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the ballistic quantum transport of a p-n-p bilayer silicene junction in the presence of spin-orbit coupling and electric field using a four-band model in combination with the transfer-matrix approach. A Mexican-hat shape of the low-energy spectrum is observed similarly to bilayer graphene under an interlayer bias. We show that while bilayer silicene shares some physics with bilayer graphene, it has many intriguing phenomena that have not been reported for the latter. First, the confined state producing a significantly non-zero transmission in Mexican hat. Second, the cloaking of the Mexican-hat confined state is found. Third, we observe that the Mexican-hat cloaking results in a strong oscillation of conductance when the incident energy is below the potential height. Finally, unlike monolayer silicene, the conductance at large interlayer distances increases with the rise of electric field when the incident energy is above the potential height.



rate research

Read More

We report on total-energy electronic-structure calculations in the density-functional theory performed for both monolayer and bilayer silicene on Ag(111) surfaces. The rt3 x rt3 structure observed experimentally and argued to be the monolayer silicene in the past [Chen et al., Phys. Rev. Lett. 110, 085504 (2013)] is identified as the bilayer silicene on the Ag(111) surface. The identification is based on our accurate density-functional calculations in which three approximations, the local density approximation, the generalized-gradient approximation, and the van-der-Waals-density-functional approximation, to the exchange-correlation energy have been carefully examined. We find that the structural tristability exists for the rt3 x rt3 bilayer silicene. The calculated energy barriers among the three stable structures are in the range of 7 - 9 meV per Si atom, indicating possible flip-flop motions among the three. We have found that the flip-flop motion between the two of the three structures produces the honeycomb structure in the STM images, whereas the motion among the three does the 1 x 1 structure. We have found that the electron states which effectively follow Dirac equation in the freestanding silicene couple with the substrate Ag orbitals due to the bond formation, and shift downwards deep in the valence bands. This feature is common to all the stable or metastable silicene layer on the Ag(111) substrate.
We investigate hybrid structures based on a bilayer quantum spin Hall system in proximity to an s-wave superconductor as a platform to mimic time-reversal symmetric topological superconductors. In this bilayer setup, the induced pairing can be of intra- or inter-layer type, and domain walls of those different types of pairing potentials host Kramers partners (time-reversal conjugate pairs) of Majorana bound states. Interestingly, we discover that such topological interfaces providing Majorana bound states can also be achieved in an otherwise homogeneous system by a spatially dependent inter-layer gate voltage. This gate voltage causes the relative electron densities of the two layers to vary accordingly which suppresses the inter-layer pairing in regions with strong gate voltage. We identify particular transport signatures (zero-bias anomalies) in a five-terminal setup that are uniquely related to the presence of Kramers pairs of Majorana bound states.
We investigate the interplay between the edge and bulk states, induced by the Rashba spin-orbit coupling, in a zigzag silicene nanoribbon in the presence of an external electric field. The interplay can be divided into two kinds, one is the interplay between the edge and bulk states with opposite velocities, and the other is that with the same velocity direction. The former can open small direct spin-dependent subgaps. A spin-polarized current can be generated in the nanoribbon as the Fermi energy is in the subgaps. While the later can give rise to the spin precession in the nanoribbon. Therefore, the zigzag silicene nanoribbon can be used as an efficient spin filter and spin modulation device.
In the phenomenon of electromagnetically induced transparency1 (EIT) of a three-level atomic system, the linear susceptibility at the dipole-allowed transition is canceled through destructive interference of the direct transition and an indirect transition pathway involving a meta-stable level, enabled by optical pumping. EIT not only leads to light transmission at otherwise opaque atomic transition frequencies, but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this letter, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active {Gamma}-point optical phonon, whose function here is similar to that of the meta-stable level in EIT of atomic systems. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating, and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm-1, based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon non-linear optics and slow light in this novel two-dimensional material, without external optical pumping and at room temperature.
Symmetry breaking in a quantum system often leads to complex emergent behavior. In bilayer graphene (BLG), an electric field applied perpendicular to the basal plane breaks the inversion symmetry of the lattice, opening a band gap at the charge neutrality point. In a quantizing magnetic field electron interactions can cause spontaneous symmetry breaking within the spin and valley degrees of freedom, resulting in quantum Hall states (QHS) with complex order. Here we report fractional quantum Hall states (FQHS) in bilayer graphene which show phase transitions that can be tuned by a transverse electric field. This result provides a model platform to study the role of symmetry breaking in emergent states with distinct topological order.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا