No Arabic abstract
Low-loss photonic integrated circuits (PIC) and microresonators have enabled novel applications ranging from narrow-linewidth lasers, microwave photonics, to chip-scale optical frequency combs and quantum frequency conversion. To translate these results into a widespread technology, attaining ultralow optical losses with established foundry manufacturing is critical. Recent advances in fabrication of integrated Si3N4 photonics have shown that ultralow-loss, dispersion-engineered microresonators can be attained at die-level throughput. For emerging nonlinear applications such as integrated travelling-wave parametric amplifiers and mode-locked lasers, PICs of length scales of up to a meter are required, placing stringent demands on yield and performance that have not been met with current fabrication techniques. Here we overcome these challenges and demonstrate a fabrication technology which meets all these requirements on wafer-level yield, performance and length scale. Photonic microresonators with a mean Q factor exceeding 30 million, corresponding to a linear propagation loss of 1.0 dB/m, are obtained over full 4-inch wafers, as determined from a statistical analysis of tens of thousands of optical resonances and cavity ringdown with 19 ns photon storage time. The process operates over large areas with high yield, enabling 1-meter-long spiral waveguides with 2.4 dB/m loss in dies of only 5x5 mm size. Using a modulation response measurement self-calibrated via the Kerr nonlinearity, we reveal that, strikingly, the intrinsic absorption-limited Q factor of our Si3N4 microresonators exceeds a billion. Transferring the present Si3N4 photonics technology to standard commercial foundries, and merging it with silicon photonics using heterogeneous integration technology, will significantly expand the scope of todays integrated photonics and seed new applications.
Thin-film lithium niobate (LN) photonic integrated circuits (PICs) could enable ultrahigh performance in electro-optic and nonlinear optical devices. To date, realizations have been limited to chip-scale proof-of-concepts. Here we demonstrate monolithic LN PICs fabricated on 4- and 6-inch wafers with deep ultraviolet lithography and show smooth and uniform etching, achieving 0.27 dB/cm optical propagation loss on wafer-scale. Our results show that LN PICs are fundamentally scalable and can be highly cost-effective.
In integrated photonics, specific wavelengths are preferred such as 1550 nm due to low-loss transmission and the availability of optical gain in this spectral region. For chip-based photodetectors, layered two-dimensional (2D) materials bear scientific and technologically-relevant properties leading to strong light-matter-interaction devices due to effects such as reduced coulomb screening or excitonic states. However, no efficient photodetector in the telecommunication C-band using 2D materials has been realized yet. Here, we demonstrate a MoTe2-based photodetector featuring strong photoresponse (responsivity = 0.5 A/W) operating at 1550nm on silicon photonic waveguide enabled by engineering the strain (4%) inside the photo-absorbing transition-metal-dichalcogenide film. We show that an induced tensile strain of ~4% reduces the bandgap of MoTe2 by about 0.2 eV by microscopically measuring the work-function across the device. Unlike Graphene-based photodetectors relying on a gapless band structure, this semiconductor-2D material detector shows a ~100X improved dark current enabling an efficient noise-equivalent power of just 90 pW/Hz^0.5. Such strain-engineered integrated photodetector provides new opportunities for integrated optoelectronic systems.
A multitude of large-scale silicon photonic systems based on ring resonators have been envisioned for applications ranging from biomedical sensing to quantum computing and machine learning. Yet, due to the lack of a scalable solution for controlling ring resonators, practical demonstrations have been limited to systems with only a few rings. Here, we demonstrate that large systems can be controlled only by using doped waveguide elements inside their rings whilst preserving their area and cost. We measure the large photoconductive changes of the waveguides for monitoring rings resonance conditions across high-dynamic ranges and leverage their thermo-optic effects for tuning. This allows us to control ring resonators without requiring additional components, complex tuning algorithms, or additional electrical I/Os. We demonstrate automatic resonance alignment of 31 rings of a 16x16 switch and of a 14-ring coupled resonator optical waveguide (CROW), making them the largest, yet most compact, automatically controlled silicon ring resonator circuits to date.
We demonstrate an ultra-compact waveguide taper in Silicon Nitride platform. The proposed taper provides a coupling-efficiency of 95% at a length of 19.5 um in comparison to the standard linear taper of length 50 um that connects a 10 um wide waveguide to a 1 um wide photonic wire. The taper has a spectral response > 75% spanning over 800 nm and resilience to fabrication variations; >200 nm change in taper and end waveguide width varies transmission by <5%. We experimentally demonstrate taper insertion loss of <0.1 dB/transition for a taper as short as 19.5 um, and reduces the footprint of the photonic device by 50.8% compared to the standard adiabatic taper. To the best of our knowledge, the proposed taper is the shortest waveguide taper ever reported in Silicon Nitride.
A novel technique is presented for realising programmable silicon photonic circuits. Once the proposed photonic circuit is programmed, its routing is retained without the need for additional power consumption. This technology enables a uniform multi-purpose design of photonic chips for a range of different applications and performance requirements, as it can be programmed for each specific application after chip fabrication. Therefore the cost per chip can be dramatically reduced because of the increase in production volume, and rapid prototyping of new photonic circuits is enabled. Essential building blocks for programmable circuits, erasable directional couplers (DCs) were designed and fabricated, utilising ion implanted waveguides. We demonstrate permanent switching between the drop port and through port of the DCs using a localised post-fabrication laser annealing process. Proof-of-principle demonstrators in the form of generic 1X4 and 2X2 programmable switching circuits were then fabricated and subsequently programmed, to define their function.