Do you want to publish a course? Click here

The Physics of Accretion Onto Highly Magnetized Neutron Stars

120   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Studying the physical processes occurring in the region just above the magnetic poles of strongly magnetized, accreting binary neutron stars is essential to our understanding of stellar and binary system evolution. Perhaps more importantly, it provides us with a natural laboratory for studying the physics of high temperature and high density plasmas exposed to extreme radiation, gravitational, and magnetic fields. Observations over the past decade have shed new light on the manner in which plasma falling at velocities near the speed of light onto a neutron star surface is halted. Recent advances in modeling these processes have resulted in direct measurement of the magnetic fields and plasma properties. On the other hand, numerous physical processes have been identified that challenge our current picture of how the accretion process onto neutron stars works. Observation and theory are our essential tools in this regime because the extreme conditions cannot be duplicated on Earth. This white paper gives an overview of the current theory, the outstanding theoretical and observational challenges, and the importance of addressing them in contemporary astrophysics research.



rate research

Read More

The aim of this paper is to investigate the transition of a strongly magnetized neutron star into the accretion regime with very low accretion rate. For this purpose we monitored the Be-transient X-ray pulsar GRO J1008-57 throughout a full orbital cycle. The current observational campaign was performed with the Swift/XRT telescope in the soft X-ray band (0.5-10 keV) between two subsequent Type I outbursts in January and September 2016. The expected transition to the propeller regime was not observed. However, the transitions between different regimes of accretion were detected. In particular, after an outburst the source entered a stable accretion state characterised by the accretion rate of ~10^14-10^15 g/s. We associate this state with accretion from a cold (low-ionised) disc of temperature below ~6500 K. We argue that a transition to such accretion regime should be observed in all X-ray pulsars with certain combination of the rotation frequency and magnetic field strength. The proposed model of accretion from a cold disc is able to explain several puzzling observational properties of X-ray pulsars.
Pulsars are highly magnetized and rapidly rotating neutron stars. The magnetic field can reach the critical magnetic field from which quantum effects of the vacuum becomes relevant, giving rise to magnetooptic properties of vacuum characterized as an effective non linear medium. One spectacular consequence of this prediction is a macroscopic friction that leads to an additional contribution in the spindown of pulsars. In this paper, we highlight some observational consequences and in particular derive new constraints on the parameters of the Crab pulsar and J0540-6919.
The accretion flow around X-ray pulsars with a strong magnetic field is funnelled by the field to relatively small regions close to the magnetic poles of the neutron star (NS), the hotspots. During strong outbursts regularly observed from some X-ray pulsars, the X-ray luminosity can be so high, that the emerging radiation is able to stop the accreting matter above the surface via radiation-dominated shock, and the accretion column begins to rise. This border luminosity is usually called the critical luminosity. Here we calculate the critical luminosity as a function of the NS magnetic field strength $B$ using exact Compton scattering cross section in strong magnetic field. Influence of the resonant scattering and photon polarization is taken into account for the first time. We show that the critical luminosity is not a monotonic function of the B-field. It reaches a minimum of a few 10^{36} erg s^{-1} when the cyclotron energy is about 10 keV and a considerable amount of photons from a hotspot have energy close to the cyclotron resonance. For small B, this luminosity is about 10^{37} erg s^{-1}, nearly independent of the parameters. It grows for the B-field in excess of 10^{12} G because of the drop in the effective cross-section of interaction below the cyclotron energy. We investigate how different types of the accretion flow and geometries of the accretion channel affect the results and demonstrate that the general behaviour of the critical luminosity on B-field is very robust. The obtained results are shown to be in a good agreement with the available observational data and provide a necessary ground for the interpretation of upcoming high quality data from the currently operating and planned X-ray telescopes.
112 - N. Bessolaz 2007
Aims : We re-examine the conditions required to steadily deviate an accretion flow from a circumstellar disc into a magnetospheric funnel flow onto a slow rotating young forming star. Methods : New analytical constraints on the formation of accretion funnels flows due to the presence of a dipolar stellar magnetic field disrupting the disc are derived. The Versatile Advection Code is used to confirm these constraints numerically. Axisymmetric MHD simulations are performed, where a stellar dipole field enters the resistive accretion disc, whose structure is self-consistently computed. Results : The analytical criterion derived allows to predict a priori the position of the truncation radius from a non perturbative accretion disc model. Accretion funnels are found to be robust features which occur below the co-rotation radius, where the stellar poloidal magnetic pressure becomes both at equipartition with the disc thermal pressure and is comparable to the disc poloidal ram pressure. We confirm the results of Romanova et al. 2002 and find accretion funnels for stellar dipole fields as low as 140 G in the low accretion rate limit of $10^{-9} M_odot.yr^{-1}$. With our present numerical setup with no disc magnetic field, we found no evidence of winds, neither disc driven nor X-winds, and the star is only spun up by its interaction with the disc. Conclusions : Weak dipole fields, similar in magnitude to those observed, lead to the development of accretion funnel flows in weakly accreting T Tauri stars. However, the higher accretion observed for most T Tauri stars (${dot M} sim 10^{-8} M_odot.yr^{-1}$) requires either larger stellar field strength and/or different magnetic topologies to allow for magnetospheric accretion.
278 - Ya.N. Istomin , P. Haensel 2012
The problem of interaction of the rotating magnetic field, frozen to a star, with a thin well conducting accretion disk is solved exactly. It is shown that a disk pushes the magnetic field lines towards a star, compressing the stellar dipole magnetic field. At the point of corotation, where the Keplerian rotation frequency coincides with the frequency of the stellar rotation, the loop of the electric current appears. The electric currents flow in the magnetosphere only along two particular magnetic surfaces, which connect the corotation region and the inner edge of a disk with the stellar surface. It is shown that the closed current surface encloses the magnetosphere. Rotation of a disk is stopped at some distance from the stellar surface, which is 0.55 of the corotation radius. Accretion from a disk spins up the stellar rotation. The angular momentum transferred to the star is determined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا