No Arabic abstract
Aims : We re-examine the conditions required to steadily deviate an accretion flow from a circumstellar disc into a magnetospheric funnel flow onto a slow rotating young forming star. Methods : New analytical constraints on the formation of accretion funnels flows due to the presence of a dipolar stellar magnetic field disrupting the disc are derived. The Versatile Advection Code is used to confirm these constraints numerically. Axisymmetric MHD simulations are performed, where a stellar dipole field enters the resistive accretion disc, whose structure is self-consistently computed. Results : The analytical criterion derived allows to predict a priori the position of the truncation radius from a non perturbative accretion disc model. Accretion funnels are found to be robust features which occur below the co-rotation radius, where the stellar poloidal magnetic pressure becomes both at equipartition with the disc thermal pressure and is comparable to the disc poloidal ram pressure. We confirm the results of Romanova et al. 2002 and find accretion funnels for stellar dipole fields as low as 140 G in the low accretion rate limit of $10^{-9} M_odot.yr^{-1}$. With our present numerical setup with no disc magnetic field, we found no evidence of winds, neither disc driven nor X-winds, and the star is only spun up by its interaction with the disc. Conclusions : Weak dipole fields, similar in magnitude to those observed, lead to the development of accretion funnel flows in weakly accreting T Tauri stars. However, the higher accretion observed for most T Tauri stars (${dot M} sim 10^{-8} M_odot.yr^{-1}$) requires either larger stellar field strength and/or different magnetic topologies to allow for magnetospheric accretion.
Studying the physical processes occurring in the region just above the magnetic poles of strongly magnetized, accreting binary neutron stars is essential to our understanding of stellar and binary system evolution. Perhaps more importantly, it provides us with a natural laboratory for studying the physics of high temperature and high density plasmas exposed to extreme radiation, gravitational, and magnetic fields. Observations over the past decade have shed new light on the manner in which plasma falling at velocities near the speed of light onto a neutron star surface is halted. Recent advances in modeling these processes have resulted in direct measurement of the magnetic fields and plasma properties. On the other hand, numerous physical processes have been identified that challenge our current picture of how the accretion process onto neutron stars works. Observation and theory are our essential tools in this regime because the extreme conditions cannot be duplicated on Earth. This white paper gives an overview of the current theory, the outstanding theoretical and observational challenges, and the importance of addressing them in contemporary astrophysics research.
We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.
We calculate the emission of protoplanetary disks threaded by a poloidal magnetic field and irradiated by the central star. The radial structure of these disks was studied by Shu and collaborators and the vertical structure was studied by Lizano and collaborators. We consider disks around low mass protostars, T Tauri stars, and FU Ori stars with different mass-to-flux ratios $lambda_{rm sys}$. We calculate the spectral energy distribution and the antenna temperature profiles at 1 mm and 7 mm convolved with the ALMA and VLA beams. We find that disks with weaker magnetization (high values of $lambda_{rm sys}$) emit more than disks with stronger magnetization (low values of $lambda_{rm sys}$). This happens because the former are denser, hotter and have larger aspect ratios, receiving more irradiation from the central star. The level of magnetization also affects the optical depth at millimeter wavelengths, being larger for disks with high $lambda_{rm sys}$. In general, disks around low mass protostars and T Tauri stars are optically thin at 7 mm while disks around FU Ori are optically thick. A qualitative comparison of the emission of these magnetized disks, including heating by an external envelope, with the observed millimeter antenna temperature profiles of HL Tau indicates that large cm grains are required to increase the optical depth and reproduce the observed 7 mm emission at large radii.
The problem of interaction of the rotating magnetic field, frozen to a star, with a thin well conducting accretion disk is solved exactly. It is shown that a disk pushes the magnetic field lines towards a star, compressing the stellar dipole magnetic field. At the point of corotation, where the Keplerian rotation frequency coincides with the frequency of the stellar rotation, the loop of the electric current appears. The electric currents flow in the magnetosphere only along two particular magnetic surfaces, which connect the corotation region and the inner edge of a disk with the stellar surface. It is shown that the closed current surface encloses the magnetosphere. Rotation of a disk is stopped at some distance from the stellar surface, which is 0.55 of the corotation radius. Accretion from a disk spins up the stellar rotation. The angular momentum transferred to the star is determined.
We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, $lambda_{sys} = 4$ (strongly magnetized disks), and $lambda_{sys} = 12$ (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7% of the viscous heating. In these models, the T Tauri disk has a larger aspect ratio, consistent with that inferred from observations. All the disks have spatially extended hot atmospheres where the irradiation flux is absorbed, although most of the mass ($sim 90-95$ %) is in the disk midplane. With the advent of ALMA one expects direct measurements of magnetic fields and their morphology at disk scales. It will then be possible to determine the mass-to-flux ratio of magnetized accretion disks around young stars, an essential parameter for their structure and evolution. Our models contribute to the understanding of the vertical structure and emission of these disks.