Do you want to publish a course? Click here

Real-Time Observation of Self-Interstitial Reactions on an Atomically Smooth Silicon Surface

62   0   0.0 ( 0 )
 Added by Sergey Kosolobov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Self-diffusion and impurity diffusion both play crucial roles in the fabrication of semiconductor nanostructures with high surface-to-volume ratios. However, experimental studies of bulk-surface reactions of point defects in semiconductors are strongly hampered by extremely low concentrations and difficulties in the visualization of single point defects in the crystal lattice. Herein we report the first real-time experimental observation of the self-interstitial reactions on a large atomically smooth silicon surface. We show that non-equilibrium self-interstitials generated in silicon bulk during gold diffusion in the temperature range 860-1000^oC are annihilated at the (111) surface, producing the net mass flux of silicon from the bulk to the surface. The kinetics of the two-dimensional islands formed by self-interstitials are dominated by the reactions at the atomic step edges. The activation energy for the interaction of self-interstitials with the surface and energy barrier for gold penetration into the silicon bulk through the surface are estimated. These results demonstrating that surface morphology can be profoundly affected by surface-bulk reactions should have important implications for the development of nanoscale fabrication techniques.



rate research

Read More

The spreading of a bilayer gold film propagating outward from gold clusters, which are pinned to clean Si(111), is imaged in real time by low energy electron microscopy. By monitoring the evolution of the boundary of the gold film at fixed temperature, a linear dependence of the spreading radius on time is found. The measured spreading velocities in the temperature range of 800 < T < 930 K varied from below 100 pm/s to 50 nm/s. We show that the spreading rate is limited by the reaction to form Au silicide, and the spreading velocity is likely regulated by the reconstruction of the gold silicide that occurs at the interface.
112 - Yaojun A. Du 2005
We reveal the microscopic self-diffusion process of compact tri-interstitials in silicon using a combination of molecular dynamics and nudged elastic band methods. We find that the compact tri-interstitial moves by a collective displacement, involving both translation and rotation, of five atoms in a screw-like motion along $[111]$ directions. The elucidation of this pathway demonstrates the utility of combining tight-binding molecular dynamics with textit{ab initio} density functional calculations to probe diffusion mechanisms. Using density functional theory to obtain diffusion barriers and the prefactor, we calculate a diffusion constant of $ 4 cdot 10^{-5} exp (- 0.49 {rm eV} / k_{B} T) {rm cm^2/s} $. Because of the low diffusion barrier, $I_{3}^{b}$ diffusion may be an important process under conditions such as ion implantation that creates excess interstitials, hence favoring formation of interstitial clusters.
Self-assembled hybrid perovskite quantum wells have attracted attention due to their tunable emission properties, ease of fabrication and device integration. However, the dynamics of excitons in these materials, especially how they couple to phonons remains an open question. Here, we investigate two widely used materials, namely butylammonium lead iodide $(CH_3(CH_2)3NH_3)2PbI_4$ and hexylammonium lead iodide $(CH_3(CH_2)5NH_3)2PbI_4$, both of which exhibit broad photoluminescence tails at room temperature. We performed femtosecond vibrational spectroscopy to obtain a real-time picture of the exciton phonon interaction and directly identified the vibrational modes that couple to excitons. We show that the choice of the organic cation controls which vibrational modes the exciton couples to. In butylammonium lead iodide, excitons dominantly couple to a 100 cm-1 phonon mode, whereas in hexylammonium lead iodide, excitons interact with phonons with frequencies of 88 cm-1 and 137 cm-1. Using the determined optical phonon energies, we analyzed PL broadening mechanisms. At low temperatures (<100 K), the broadening is due to acoustic phonon scattering, whereas at high temperatures, LO phonon-exciton coupling is the dominant mechanism. Our results help explain the broad photoluminescence lineshapes observed in hybrid perovskite quantum wells and provide insights into the mechanism of exciton-phonon coupling in these materials.
66 - J. Kim 1999
We propose a di-interstitial model for the P6 center commonly observed in ion implanted silicon. The di-interstitial structure and transition paths between different defect orientations can explain the thermally activated transition of the P6 center from low-temperature C1h to room-temperature D2d symmetry. The activation energy for the defect reorientation determined by ab initio calculations is 0.5 eV in agreement with the experiment. Our di-interstitial model establishes a link between point defects and extended defects, di-interstitials providing the nuclei for the growth.
218 - E. Durgun , D. I. Bilc , S. Ciraci 2012
We report a first principles systematic study of atomic, electronic, and magnetic properties of hydrogen saturated silicon nanowires (H-SiNW) which are doped by transition metal (TM) atoms placed at various interstitial sites. Our results obtained within the conventional GGA+U approach have been confirmed using an hybrid functional. In order to reveal the surface effects we examined three different possible facets of H-SiNW along [001] direction with a diameter of ~2nm. The energetics of doping and resulting electronic and magnetic properties are examined for all alternative configurations. We found that except Ti, the resulting systems have magnetic ground state with a varying magnetic moment. While H-SiNWs are initially non-magnetic semiconductor, they generally become ferromagnetic metal upon TM doping. Even they posses half-metallic behavior for specific cases. Our results suggest that H-SiNWs can be functionalized by TM impurities which would lead to new electronic and spintronic devices at nanoscale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا