Do you want to publish a course? Click here

Thermally activated reorientation of di-interstitial defects in silicon

67   0   0.0 ( 0 )
 Added by Jeongnim Kim
 Publication date 1999
  fields Physics
and research's language is English
 Authors J. Kim




Ask ChatGPT about the research

We propose a di-interstitial model for the P6 center commonly observed in ion implanted silicon. The di-interstitial structure and transition paths between different defect orientations can explain the thermally activated transition of the P6 center from low-temperature C1h to room-temperature D2d symmetry. The activation energy for the defect reorientation determined by ab initio calculations is 0.5 eV in agreement with the experiment. Our di-interstitial model establishes a link between point defects and extended defects, di-interstitials providing the nuclei for the growth.



rate research

Read More

112 - Yaojun A. Du 2005
We reveal the microscopic self-diffusion process of compact tri-interstitials in silicon using a combination of molecular dynamics and nudged elastic band methods. We find that the compact tri-interstitial moves by a collective displacement, involving both translation and rotation, of five atoms in a screw-like motion along $[111]$ directions. The elucidation of this pathway demonstrates the utility of combining tight-binding molecular dynamics with textit{ab initio} density functional calculations to probe diffusion mechanisms. Using density functional theory to obtain diffusion barriers and the prefactor, we calculate a diffusion constant of $ 4 cdot 10^{-5} exp (- 0.49 {rm eV} / k_{B} T) {rm cm^2/s} $. Because of the low diffusion barrier, $I_{3}^{b}$ diffusion may be an important process under conditions such as ion implantation that creates excess interstitials, hence favoring formation of interstitial clusters.
218 - E. Durgun , D. I. Bilc , S. Ciraci 2012
We report a first principles systematic study of atomic, electronic, and magnetic properties of hydrogen saturated silicon nanowires (H-SiNW) which are doped by transition metal (TM) atoms placed at various interstitial sites. Our results obtained within the conventional GGA+U approach have been confirmed using an hybrid functional. In order to reveal the surface effects we examined three different possible facets of H-SiNW along [001] direction with a diameter of ~2nm. The energetics of doping and resulting electronic and magnetic properties are examined for all alternative configurations. We found that except Ti, the resulting systems have magnetic ground state with a varying magnetic moment. While H-SiNWs are initially non-magnetic semiconductor, they generally become ferromagnetic metal upon TM doping. Even they posses half-metallic behavior for specific cases. Our results suggest that H-SiNWs can be functionalized by TM impurities which would lead to new electronic and spintronic devices at nanoscale.
Using photo-emission electron microscopy with X-ray magnetic circular dichroism as a contrast mechanism, new insights into the all-optical magnetization switching (AOS) phenomenon in GdFe based rare-earth transition metal ferrimagnetic alloys are provided. From a sequence of static images taken after single linearly polarized laser pulse excitation, the repeatability of AOS can be measured with a correlation coefficient. It is found that low coercivity enables thermally activated domain wall motion, limiting in turn the repeatability of the switching. Time-resolved measurement of the magnetization dynamics reveal that while AOS occurs below and above the magnetization compensation temperature $T_text{M}$, it is not observed in GdFe samples where $T_text{M}$ is absent. Finally, AOS is experimentally demonstrated against an applied magnetic field of up to 180 mT.
176 - L. Zhang , Q. Wu , S. Li 2021
Electrides are an emerging class of materials with highly-localized electrons in the interstices of a crystal that behave as anions. The presence of these unusual interstitial quasi-atom (ISQ) electrons leads to interesting physical and chemical properties, and wide potential applications for this new class of materials. Crystal defects often have a crucial influence on the properties of materials. Introducing impurities has been proved to be an effective approach to improve the properties of a material and to expand its applications. However, the interactions between the anionic ISQs and the crystal defects in electrides are as yet unknown. Here, dense FCC-Li was employed as an archetype to explore the interplay between anionic ISQs and interstitial impurity atoms in this electride. This work reveals a strong coupling among the interstitial impurity atoms, the ISQs, and the matrix Li atoms near to the defects. This complex interplay and interaction mainly manifest as the unexpected tetrahedral interstitial occupation of impurity atoms and the enhancement of electron localization in the interstices. Moreover, the Be impurity occupying the octahedral interstice shows the highest negative charge state (Be8-) discovered thus far. These results demonstrate the rich chemistry and physics of this emerging material, and provide a new basis for enriching their variants for a wide range of applications.
Self-diffusion and impurity diffusion both play crucial roles in the fabrication of semiconductor nanostructures with high surface-to-volume ratios. However, experimental studies of bulk-surface reactions of point defects in semiconductors are strongly hampered by extremely low concentrations and difficulties in the visualization of single point defects in the crystal lattice. Herein we report the first real-time experimental observation of the self-interstitial reactions on a large atomically smooth silicon surface. We show that non-equilibrium self-interstitials generated in silicon bulk during gold diffusion in the temperature range 860-1000^oC are annihilated at the (111) surface, producing the net mass flux of silicon from the bulk to the surface. The kinetics of the two-dimensional islands formed by self-interstitials are dominated by the reactions at the atomic step edges. The activation energy for the interaction of self-interstitials with the surface and energy barrier for gold penetration into the silicon bulk through the surface are estimated. These results demonstrating that surface morphology can be profoundly affected by surface-bulk reactions should have important implications for the development of nanoscale fabrication techniques.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا