Do you want to publish a course? Click here

Real-Time Observation of Reactive Spreading of Gold on Silicon

97   0   0.0 ( 0 )
 Added by Nicola Ferralis
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spreading of a bilayer gold film propagating outward from gold clusters, which are pinned to clean Si(111), is imaged in real time by low energy electron microscopy. By monitoring the evolution of the boundary of the gold film at fixed temperature, a linear dependence of the spreading radius on time is found. The measured spreading velocities in the temperature range of 800 < T < 930 K varied from below 100 pm/s to 50 nm/s. We show that the spreading rate is limited by the reaction to form Au silicide, and the spreading velocity is likely regulated by the reconstruction of the gold silicide that occurs at the interface.

rate research

Read More

Quantum dots are recognized as a suitable platform for studying thermodynamic phenomena involving single electronic charges and spins in nano-scale devices. However, such a thermodynamic system is usually driven by electron reservoirs at different temperatures, not by a lattice temperature gradient. We report on experimental observations of charge-spin cooperative dynamics in transitions of two-electron spin states in a GaAs double quantum dot located in a non-equilibrium phonon environment. Enhancements in the spin-flip processes are observed, originating from phonon excitation combined with the spin-orbit interaction. In addition, due to the spatial gradient of phonon density between the dots, the spin-flip rate during an inter-dot electron tunnel from a hot to a cold dot is more enhanced than in the other direction, resulting in accumulation of parallel spin states in the double dot.
We provide a direct proof of two-electron Andreev transitions in a superconductor - normal metal tunnel junction by detecting them in a real-time electron counting experiment. Our results are consistent with ballistic Andreev transport with an order of magnitude higher rate than expected for a uniform barrier, suggesting that only part of the interface is effectively contributing to the transport. These findings are quantitatively supported by our direct current measurements in single-electron transistors with similar tunnel barriers.
We extend our previous shell effect observation in gold nanowires at room temperature under ultra high vacuum to the other two noble metals: silver and copper. Similar to gold, silver nanowires present two series of exceptionally stable diameters related to electronic and atomic shell filling. This observation is in concordance to what was previously found for alkali metal nanowires. Copper however presents only electronic shell filling. Remarkably we find that shell structure survives under ambient conditions for gold and silver.
255 - K. Smaali , S. Desbief , G. Foti 2014
We present a quantitative exploration, combining experiment and simulation, of the mechanical and electronic properties, as well as the modifications induced by an alkylthiolated coating, at the single NP level. We determine the response of the NPs to external pressure in a controlled manner by using an atomic force microscope tip. We find a strong reduction of their Young modulus, as compared to bulk gold, and a significant influence of strain in the electronic properties of the alkylthiolated NPs. Electron transport measurements of tiny molecular junctions (NP/alkylthiol/CAFM tip) show that the effective tunnelling barrier through the adsorbed monolayer strongly decreases with increasing the applied load, which translates in a remarkable and unprecedented increase of the tunnel current. These observations are successfully explained using simulations based on finite element analysis (FEA) and first-principles calculations that permit to consider the coupling between the mechanical response of the system and the electric dipole variations at the interface.
We present theoretical calculations for the absorption properties of protein-coated gold nanoparticles on graphene and graphite substrates. As the substrate is far away from nanoparticles, numerical results show that the number of protein bovine serum molecules molecules aggregating on gold surfaces can be quantitatively determined for gold nanoparticles with arbitrary size by means of the Mie theory and the absorption spectra. The presence of graphitic substrate near protein-conjugated gold nanoparticles substantially enhances the red shift of the surface plasmon resonances of the nanoparticles. Our findings show that graphene and graphite provide the same absorption band when the distance between the nanoparticles and the substrate is large. However at shorter distances, the resonant wavelength peak of graphene-particle system differs from that of graphite-particle system. Furthermore, the influence of the chemical potential of graphene on the optical spectra is also investigated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا